
Multi-Vehicle Adaptive Planning with Online
Estimated Cost due to Disturbance Forces

Vishnu R. Desaraju?, Lantao Liu, and Nathan Michael

Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
{rajeswar, lantao, nmichael}@cmu.edu

Abstract. This paper proposes an adaptive planning architecture for
multi-vehicle teams subject to an uncertain, spatially-varying distur-
bance force. Motivated by a persistent surveillance task, the planning
architecture is designed with three hierarchical levels. The highest level
generates interference-free routes for the entire team to monitor areas
of interest that have higher uncertainty. The lower-level planners com-
pute trajectories that can be tracked accurately along these routes by
anticipating the effects of the disturbance force. To this end, the vehi-
cles maintain an online estimate of the disturbance force, which drives
adaptation at all planning levels. A set of simulation results validate the
proposed method and demonstrate its utility for persistent surveillance.

Keywords: Adaptive Planning ·Vehicle Routing ·Persistent Surveillance

1 Introduction

Trajectory planning in the presence of significant, uncertain, external distur-
bance forces must be adaptive in order to successfully execute complex, multi-
vehicle missions, such as persistent surveillance of a set of targets [1]. This is
particularly true for micro aerial vehicles (MAVs) that have limited capabili-
ties and cannot simply reject disturbances (e.g., due to HVAC systems or wind
flow) via feedback control [2, 3]. A failure to compensate for these exogenous
forces may lead to significant deviations from the planned trajectory, poten-
tially leading to mission failure. Our recent work [4] addresses this problem for
a single vehicle through a hierarchical planning framework that enhances trajec-
tory tracking performance by adapting online to an uncertain, spatially-varying
disturbance force.

However, the problem becomes more complex when multiple vehicles are
involved. For the multi-vehicle persistent surveillance scenario, there are several
objectives. We wish to generate exclusive trajectories such that each vehicle
visits a set of target locations distinct from other vehicles to maximize coverage
and reduce unnecessary overlap [5]. We also seek to maintain an estimate of any
exogenous forces acting on the system and use this to select routes such that
the trajectories generated can be tracked accurately. Additionally, since frequent
re-planning is needed to leverage this estimate, the planning method must be
amenable to running online.

? We gratefully acknowledge the support of ARL Grant W911NF-08-2-0004.

2

Global
Planner

Local
Planner

Closed-loop
System disturbance

force
0

global
trajectory

conditional distribution current belief
1

local
trajectory

state
0

transition
costs

Cost
Map

Disturbance
Map

Disturbance
Estimator

Routing
Algorithm

targets

route
0

current belief
0

Closed-loop
System disturbance

force
1

state
1

Disturbance
Estimator

route
1 Global

Planner
Local

Planner

global
trajectory

local
trajectory

...

adjacency matrix

Fig. 1. Overview of the system architecture. Each gray block represents one vehicle.

Maximizing the number of important targets in the planned route can be
approximated using heuristics to the Traveling Salesman Problem (TSP) [6].
However, for multi-agent systems, generating exclusive tours for different agents
is extremely difficult [7]. Since the multi-vehicle routing problem belongs to the
class of collective decision problems that must optimize the overall team per-
formance, a natural way to address it is through task allocation/assignment.
Strategies employing task allocation to generate routing paths have been pro-
posed. Representative works include the incremental deployment approach [8],
where paths are constructed in stages using dynamic programming, the finishing
time constrained architecture [9], which embeds online path cost approximations,
as well as auction-based schemes [10], where targets are auctioned/competed
for by individual agents in a decentralized fashion. Different from these ideas,
we recently proposed a multi-robot navigation method by adapting the graph
matching variant of the Hungarian algorithm [11]—originally designed to solve
the optimal assignment problem—to construct routing paths in a spatial topol-
ogy [12]. The approach has several useful features including being particularly
effective at generating multiple non-interfering paths and enabling online com-
putation of routes due to its low computational complexity.

In this work, we extend our previous single vehicle adaptive planner [4] to the
multi-vehicle case by introducing a high-level planning layer that is responsible
for the multi-vehicle coordination. This new high-level planner is a centralized,
multi-vehicle routing method built on a navigation graph and produces a set of
interference-free routes for all vehicles. A hierarchical trajectory planner then
generates trajectories for each vehicle to execute these routes, and the vehicles
continuously update a shared estimate of the spatially-varying disturbance force
encountered as they traverse the environment. This estimate drives adaptation
in the trajectory planner, allowing the vehicles to avoid strong disturbance forces
and ensuring feasibility of the trajectories. In addition, we update the edge costs
in the navigation graph using this estimate, thereby adapting the routing as-
signment to the environment as well. We show that the high-level multi-vehicle
routing and lower-level single-vehicle trajectory planning are tightly coupled and
form a feedback loop—the high-level routing provides general navigation solu-
tions while the lower-level planning computes the actual trajectory for the vehicle
to execute and updates the navigation graph, which in turn facilitates the global
routing. The general system architecture is illustrated in Fig. 1.

3

y

z

µ

D

F

M

Fig. 2. The state space configuration for a 2-D quadrotor MAV in the y-z plane with
control inputs F and M and external disturbance force D.

2 Preliminaries

We consider the multi-vehicle persistent surveillance task where we wish to plan
trajectories for n vehicles to monitor a set of m fixed, known target locations
in the environment (n ≤ m). In addition, an unknown, spatially-varying distur-
bance force acts on the vehicles throughout the mission, affecting their motion.

2.1 Vehicle Model

The approach outlined in Fig. 1 is applicable to any dynamic system, but to
simplify presentation, we consider a 2D quadrotor MAV whose pose in the world
frame is given by position p = [y, z]T and pitch angle θ. The quadrotor has
mass m, inertia J , and is subject to an additive disturbance force D = [dy, dz]

T ,
as shown in Fig. 2. We use a nonlinear backstepping controller [13] to track
a smooth reference trajectory pd(t) = [yd(t), zd(t)]

T , which implicitly defines a
desired pitch θd(t) due to the coupling in the dynamics. Thrust and moment, F
and M , are the control inputs, e2 is a unit vector along the world z-axis, and
(kp, kv, kR, kΩ) are the controller gains. The resulting closed loop dynamics are

mÿ = −F sin θ + dy

mz̈ = F cos θ −mg + dz

Jθ̈ = M

F = [− sin θ cos θ] (−kp(p− pd)− kv(ṗ− ṗd)−mge2 +mp̈d)

M = −kR(θ − θd)− kΩ(θ̇ − θ̇d)

(1)

2.2 Disturbance Cost Map and Navigation Graph

The disturbance force acting on the vehicle can be modeled as a spatially-varying,
stochastic process, and the force observed at any location is a sample drawn from
this process. Therefore, to drive adaptation in the planners, we must maintain
an online estimate of this process. We select a discrete conditional probability
distribution representation to facilitate online updates of this estimate with local
observations [4]. A Kalman filter updates the belief D̃ ∼ N(µD, ΣD) at each cell
of the conditional distribution. The process and measurement models are

Dk+1 = Dk + ωk, ωk ∼ N(0, Σω)

zk = µDk
+ νk, νk ∼ N(0, ΣDk

)

4

where Σω defines the rate at which the uncertainty about old estimates increases,
and the measurement model is assumed to be Gaussian [14] with parameters
given by D̃ in each cell. If a prior for this conditional distribution is available, e.g.,
constructed from previous missions, environment geometry, or other scenario-
specific information [15], this can be used to guide the initial planning iterations.

From this disturbance force belief distribution, we can compute a discrete
cost map, in which the cost corresponding to each cell of the discrete conditional
distribution is defined as the magnitude of its current force estimate. This also
allows us to build a connected graph G = (V, E) in which each vertex vi ∈ V
represents a target location and the weight of an edge between two locations
captures information from the current cost map. Each vertex is only connected
to its k nearest neighbors. Running A∗ search on the cost map yields estimates
of the traversal cost between any two vertices connected in the graph.

The disturbance belief distribution can also be used to evaluate surveillance
performance. Since uncertainty increases over time at each location, the per-
sistent surveillance objective can be recast as minimizing uncertainty at each
location vertex vi, e.g., measured by trace(ΣD(vi)). Therefore, for the high level
routing, we wish to decrease the overall uncertainty across all vertices. This is
achieved by selecting a set of representative vertices V ∈ V that are most un-
certain (see Sect. 3.3) and routing the vehicles to transit them so as to reduce
the uncertainty with updated observations. To do so, we construct a navigation
graph G = (V,E) to capture the topology of uncertain regions, where an edge
e(vi, vj) ∈ E with an edge weight we(vi, vj) > 0 denotes the traversibility from
vi ∈ V to vj ∈ V . Note that the navigation graph G is directed, so it is possible
that we(vi, vj) 6= we(vj , vi).

3 Multi-Vehicle Trajectory Planning with Dynamic Costs

With multiple vehicles, trajectories must be generated simultaneously for all
vehicles in the team. By correlating the navigation graph to a bipartite graph,
the multi-vehicle routing problem can be solved via the optimal task assignment
mechanism. This provides a set of goals for each vehicle’s trajectory planner.

3.1 Multi-Vehicle Route Planner Optimized by Task Assignment

We treat the current location of each vehicle as another vertex in the navigation
graph and denote these vertices as the starting nodes Vs; we use Vg to denote
the goal nodes. Sets Vs, Vg, V are disjoint and we generate the goal nodes online
satisfying |Vs| = |Vg| = n (see Sect. 3.3). Then the multi-vehicle routing problem
becomes computing a set of routing paths starting from Vs, ending at Vg, and
transiting some vertices in V .

Assume the underlying adjacency matrix for navigation graph G is A. Nor-
mally, the diagonal entries A(i, i) are set to 0 and these entries usually convey
no useful information. We have shown in our previous work [12] that by trans-
forming G to a form of bipartite graph G̃ = (V, V ′, Ẽ), the diagonal values can
be set as non-zero and used to control various properties of the routing paths.

5

(a) (b)

Fig. 3. Bipartite graph in the form of 3D mesh, where V = {v1, v2, v3}, V ′ =
{v′1, v′2, v′3}, Vs = {vs}, Vg = {vg}. (a) Matched edges are in red bold, others are
unmatched edges; (b) The number of matched edges increases by one after switching
edge states of the augmenting path vs—v′1—v1—v′2—v2—vg. The projected routing
path is vs—v1—v2—vg, the vertices of which are only in navigation graph G. The path
is illustrated by dashed arrows in the top layer.

Specifically, the transformed bipartite graph G̃ has two sets of nodes V and
V ′, where V ′ is simply a copy of V such that |V | = |V ′|, and an edge ẽ(v, v′) ∈ Ẽ
connects the vertices v ∈ V and v′ ∈ V ′. More formally, if there is an edge
e(vi, vj) ∈ E ∈ G, we construct a pair of bipartite graph edges,

ẽ(vi, v
′
j) ∈ Ẽ ∈ G̃, vi ∈ V, v′j ∈ V ′

ẽ(v′i, vj) ∈ Ẽ ∈ G̃, v′i ∈ V ′, vj ∈ V
(2)

both of which are weighted the same as the counterpart edge e(vi, vj) ∈ G

wẽ(vi, v
′
j) = wẽ(v

′
i, vj) = we(vi, vj), i 6= j. (3)

For each pair of vertices with identical labels (i.e., vi and v′i), an edge is also
created between them:

ẽ(vi, v
′
i) ∈ Ẽ ∈ G̃, (4)

which is weighted by
wẽ(vi, v

′
i) = A(i, i). (5)

We then insert the starting and goal vertices into V and V ′, respectively,

V = V ∪ Vs, V ′ = V ′ ∪ Vg, (6)

and add edges following the rules described in (2). Fig. 3(a) illustrates the re-
sulting 3-dimensional mesh with insertion of only one starting vertex and one
ending vertex.

The bipartite graph is the main data structure used in the Hungarian al-
gorithm [11]—an optimal assignment algorithm—which aims to find a perfect
matching where each vertex in V is uniquely matched (assigned) to a vertex in
V ′ and total cost is minimized. The Hungarian algorithm grows the matching by
searching for a path, called an augmenting path, which consists of an alternating
sequence of matched and unmatched edges but with free end nodes such that the
number of unmatched edges in the path is one more than that of the matched

6

(a) (b) (c) (d)

Fig. 4. Routing paths computed from adjacency matrix A of non-zero diagonal entries.
(a) Single path: all diagonal entries weighted by non-zero costs; (b) Single path: only
diagonal entries corresponding to vertices of bottom-half plane are weighted by non-
zero cost; (c) Five interference-free paths are generated for five starting vertices; (d)
With weighted diagonal entries, routing paths (red winding curves) attempt to cover
more vertices within a bounded region. (Blue bold paths are the shortest paths.)

ones. Consequently, if the states of all edges in the augmenting path are switched,
the set of matched edges,M, are augmented whereas the number of unmatched
edges are decreased. (Note, each vertex on the augmenting path is always on
only one matched edge no matter how the edge states are switched.) The Hun-
garian algorithm iteratively grows M via searching for augmenting paths until
|M| = |V |, indicating that each vertex in V is matched/assigned to a unique
vertex in V ′. This also means that only the weights of matched edges contribute
to the optimization objective f :

f = min
∑

∀ẽ(vi,vj)∈M

wẽ(vi, vj) = min

n∑
i=1

A(i, φ(i)) (7)

where φ(i) denotes the vertex that matches vertex vi. Searching for an aug-
menting path requires a time complexity of O(|V |2). More specific algorithmic
description and analysis can be found in [11, 16].

After an augmenting path P̃ starting from a vertex vs ∈ V and ending at a
vertex v′g ∈ V ′ is computed by the Hungarian algorithm, a routing path P can

be obtained by mapping G̃ back to G. Specifically, on P̃ ∈ G̃ all v′ ∈ V ′ except
vg are removed and the remaining vertices are connected sequentially to form
a path routing from vs to vg, as illustrated in Fig. 3(b). This shows that with
the adjacency matrix and pre-determined vs and vg, a routing path connecting
them can be computed by the optimal assignment method. For multiple starting
and ending vertices, multiple paths can be obtained. Since each vertex can not
simultaneously be on more than one augmenting path, the resulting routing
paths are interference-free with no shared vertex.

Unlike the navigation graph G, when an adjacency matrix A is used to
represent the bipartite graph G̃, different values of diagonal entries produce
distinct augmenting paths that correspond to distinct routing paths. To analyze
the overall path cost for an arbitrary set of augmenting paths, if we treat the
on-path edges and off-path edges separately, Eq. (7) becomes,

f = min
(∑
ẽ(vi,vj)∈P̃ ,ẽ(vi,vj)∈M

wẽ(vi, vj) +
∑

ẽ(vi,vj)/∈P̃ ,ẽ(vi,vj)∈M

wẽ(vi, vj)
)
, (8)

7

and if A(i, i) = 0, ∀i, the second term of Eq. (8) becomes 0, and

f = min
∑

ẽ(vi,vj)∈P̃ ,ẽ(vi,vj)∈M

wẽ(vi, vj). (9)

which implies the overall cost of the paths must be the minimum, yielding a set
of globally shortest routing paths.

However, if we add a value δi > 0 to each A(i, i), Eq. (8) becomes

f = min
(∑
ẽ(vi,vj)∈P̃ ,ẽ(vi,vj)∈M

wẽ(vi, vj) + kδi
)
, (10)

where k is the number of vertices (and the associated matched edges) that are
not on P̃ . Intuitively, if δi is large, more vertices on the path can reduce k and
thus improve the minimization objective. However, the path that involves more
vertices may also introduce extra path cost as the paths become more winding.
Thus, the vertex vi with non-zero δi may be transited by a routing path only if
such change decreases the value of Eq. (10). See Fig. 4 for an illustration.

3.2 Single-Vehicle Adaptive Trajectory Planner

Once routes have been established for each vehicle, we switch to planning at the
individual vehicle level in order to compute trajectories. Specifically, we wish to
compute trajectories along the specified routes which satisfy all constraints, such
as vehicle dynamics and sensing limitations, while also anticipating and compen-
sating for the disturbance forces present along the trajectory. Therefore, we use
a hierarchical, adaptive trajectory planner based on our previous work [4] which
ensures constraint satisfaction while adapting the trajectories to the disturbance
force belief as it is updated online.

As shown in Fig. 5, the routing algorithm from Sect. 3.1 provides a route,
defined as a sequence of target locations, to each vehicle’s global trajectory plan-
ner. The global trajectory planner then selects the first target as the trajectory
planning goal and computes a nominal trajectory to it from the vehicle’s current
position using an A∗ path fit with a polynominal spline to form a smooth trajec-
tory. The global planner guides the vehicle around obstacles and other environ-
mental features that are not in the vehicle’s immediate vicinity. In particular, we
take the cost map into account when computing the A∗ path so that the global
planner avoids regions that are believed to have high cost due to strong distur-
bance forces. As this belief evolves, the global planner will adapt and identify
better trajectories between targets that favor low-disturbance regions. However,
this planner does not ensure constraint satisfaction.

To enforce this requirement, we use a local planner based on the Closed-loop
RRT (CL-RRT) algorithm [17]. CL-RRT simulates a closed-loop model of the
vehicle, e.g., (1), to grow a tree of potential trajectories toward randomly sam-
pled reference points. Since the closed-loop model embeds the vehicle dynamics,
as well as other constraints, the trajectories generated will satisfy all constraints

8

Fig. 5. Overview of the hierarchical trajectory planner. The dashed line indicates the
computed route through the targets (magenta) to the routing goal (cyan). The global
trajectory (red) guides the vehicle around obstacles to the first target (green) and the
local planner selects the best trajectory (blue) from the set of feasible options (orange).

by construction. This property is preserved even if we add exogenous forces to
the closed-loop model. Therefore, we sample the disturbance force belief distri-
bution at each step of the simulation and propagate the dynamics accordingly.
The resulting branches in the tree then represent expected trajectories of the
vehicle subject to the disturbance force, and these trajectories will automati-
cally adapt to the disturbance force estimate as the local planner replans online.
We limit the local planner to explore the region around the global trajectory by
biasing the sampling distribution accordingly. As each vehicle executes its local
trajectory, it gains new observations of the disturbance force [14]. We can then
update the shared conditional probability distribution in the areas it traverses.
Predicting future motion using this continually updated distribution allows each
vehicle to plan feasible trajectories that it can execute accurately and reliably.
Furthermore, this approach enables online trajectory planning since the global
A∗ planner can be run quickly on a sparse grid, and CL-RRT is designed to run
online [17].

3.3 Online Adaptive Routing

Updating the disturbance belief online also enables adaptation at the routing
level by informing the routing goal selection process. We select a set of ver-
tices as the current goals and update the set as vehicles complete their routes.

Specifically, for update iteration k, we select the set of vertices V
(k)
g such that

V (k)
g = {vi | trace(ΣD(vi)) ≥ trace(ΣD(vj))}, ∀vj ∈ V (k−1)

g , |V (k)
g | = n

The set V
(k)
g then corresponds to the locations without recent, accurate obser-

vations, as described in Sect. 2.2.
We can also update the adjacency matrix with the current cost map. As in

Sect. 2.2, the edge weights in the navigation graph are updated by running A∗

between the corresponding vertices. We also scale the vertex weights, defined by
the diagonal elements of the adjacency matrix, to down-weight the vertices with
low uncertainty (i.e., that have been visited recently). The scale factor for vi is

λi =
trace(ΣD(vi))∑n
j=1 trace(ΣD(vj))

9

(a) (b)

(c) (d)

Fig. 6. Environment maps. (a) True spatially-varying disturbance force; (b) Cost map
derived from the true disturbance force; (c) Navigation graph for the ten targets; (d)
Adjacency matrix with true edge costs computed via A∗ (black indicates no edge).

and effectively prioritizes the vertices by the relative uncertainty in the belief
distribution at each location.

Down-weighting based on uncertainty also enables the team of vehicles to
recompute routes more frequently, further leveraging the online updated distur-
bance belief and cost map. During any update period, if n′ vehicles complete

their routes and reach their goals, V
(k)
g′ , the routing algorithm is re-run to de-

termine new goals and routes for those vehicles. The new set of goals is then

V (k)
g =

(
V (k−1)
g \ V (k−1)

g′

)
∪ V̄ (k)

g

where V̄ (k)
g = {vi | trace(ΣD(vi)) ≥ trace(ΣD(vj))}, ∀vj ∈ V (k−1)

g , |V̄ (k)
g | = n′.

Although the routing algorithm will compute new routes for all vehicles, this

definition of V
(k)
g maintains any unvisited goals from the previous routes, thus

minimizing disruption to other vehicles. In addition, the new routes will au-
tomatically avoid revisiting locations that have been visited recently (by any
vehicle) due to the low uncertainty at those locations producing a small scale
factor.

4 Results

To evaluate this adaptive planning approach in simulation, we consider a persis-
tent surveillance scenario in which a team of three quadrotor MAVs are deployed
to monitor a set of ten known target locations. The vehicles must operate in the
presence of an unknown, spatially-varying disturbance force, shown in Fig. 6(a)
with the corresponding cost map in Fig. 6(b). However, the team is only pro-
vided a prior on the disturbance force belief distribution. Figure 6(c) shows
the locations of the ten target sites (vertices) and edges that define the navi-
gation graph. The corresponding edge costs are shown in the adjacency matrix
(Fig. 6(d)). Note that these edges do not avoid obstacles or high-cost regions;
that is left to the trajectory planners.

10

(a) (b) (c)

Fig. 7. Snapshots of the 3-vehicle adaptive planning scenario showing evolution of the
trajectories, cost map, and adjacency matrix. (a) Initial conditions with costs from prior
on disturbance force; (b) Executed trajectories help update belief and corresponding
costs; (c) Vehicles find preferred routes (trajectory-dense regions) as belief converges.

Fig. 8. Mean edge cost error (difference between current edge costs and costs computed
with perfect information) decreases over successive runs of the routing algorithm.

Figure 7 shows three snapshots from the simulation. The first column rep-
resents the initial positions of the vehicles with plans computed using the cost
map prior (current goals are cyan circles, CL-RRT in yellow, current trajectory
in blue, executed trajectory in magenta). The vehicles execute these plans while
updating the disturbance force belief, as indicated by the updated cost map and
adjacency matrix in the second column. Over time, the trajectories tend to settle
into certain regions as the belief distribution approaches the true distribution.
Consequently, the cost map and elements of the adjacency matrix also approach
the values computed in the perfect information case (Fig. 6). Figure 8 shows the
mean error decrease as the vehicles continue updating their routes.

To quantify the performance of this adaptive planning approach, we look at
the mean uncertainty at each target, given by trace(ΣD(vi)), over the course of
a fixed-duration mission. Figure 9 shows the mean uncertainty for three routing
options: randomly selecting routing goals, using a manually prescribed tour of
the vertices, and using the adaptive routing approach presented in Sect. 3.3.

11

Fig. 9. Comparison of the average uncertainty per target over the course of the mission,
measured by trace(ΣD(vi)). The adaptive routing approach performs far better than
randomly selecting goals for the routing algorithm and is comparable to the manually
prescribed tour, but with the advantage of being completely autonomous.

Fig. 10. Distance between vehicles following interference-free routes

Both the tour and adaptive routing perform comparably and are able to keep
the uncertainty low over all vertices, while randomly selecting routing goals may
leave certain targets unvisited longer. However, these scenarios assume Σω is the
same at all locations. If instead the uncertainty grows faster in certain regions,
the difference between the tour and adaptive approach is more pronounced. If
the uncertainty in the high-disturbance region at the center increases three times
as quickly as in the rest of the environment, the mean uncertainty at the center
vertex is 2.367 for the tour and 1.635 for adaptive routing, a 31% reduction.

The routing algorithm also provides a basic deconfliction strategy as it pro-
duces interference-free paths. This results in spatial separation of the vehicles
for the duration of the mission, as shown in Fig. 10, thereby avoiding potential
collisions and reducing interference effects due to the thrust from other vehicles.

5 Conclusions and Future Work

In this work, we have presented a hierarchical, adaptive planning algorithm
for multi-vehicle teams that enables reliable operation in environments with
uncertain, spatially varying disturbance forces acting on the vehicles. An online
estimate of the disturbance force drives the planners to adapt how they select
routes and trajectories in order execute a persistent surveillance mission while
maintaining trajectory feasibility. Simulation results demonstrate the utility of
this approach in comparison to alternate routing strategies. This provides a
foundation to further investigate the interaction between disturbance belief and

12

the routing algorithm and to consider other factors, such as prioritizing target
locations.

References

1. Bethke, B., Bertuccelli, L.F., How, J.P.: Experimental demonstration of adaptive
MDP-based planning with model uncertainty. In: Proc. of the AIAA Guidance,
Navigation, and Control Conf., Honolulu, Hawaii (2008)

2. Garau, B., Alvarez, A., Oliver, G.: Path Planning of Autonomous Underwater
Vehicles in Current Fields with Complex Spatial Variability: an A* Approach. In:
Proc. of the IEEE Intl. Conf. on Robot. and Autom. (2005) 194–198

3. Ceccarelli, N., Enright, J.J., Frazzoli, E., Rasmussen, S.J., Schumacher, C.J.: Micro
UAV Path Planning for Reconnaissance in Wind. In: Proc. of the Amer. Control
Conf. (July 2007) 5310–5315

4. Desaraju, V.R., Michael, N.: Hierarchical adaptive planning in environments with
uncertain, spatially-varying disturbance forces. In: Proc. of the IEEE Intl. Conf.
on Robot. and Autom., Hong Kong, China (May 2014)

5. Jones, P.J.: Cooperative area surveillance strategies using multiple unmanned
systems. In: PhD thesis, Georgia Institute of Technology. (2009)

6. Sundar, K., Rathinam, S.: Algorithms for routing an unmanned aerial vehicle in
the presence of refueling depots. CoRR abs/1304.0494 (2013)

7. Bullo, F., Frazzoli, E., Pavone, M., Savla, K., Smith, S.: Dynamic vehicle routing
for robotic systems. Proceedings of the IEEE 99(9) (2011) 1482–1504

8. Howard, A., Matarić, M.J., Sukhatme, G.S.: An incremental self-deployment al-
gorithm for mobile sensor networks. Auton. Robots 13(2) (2002) 113–126

9. Bellingham, J., Tillerson, M., Richards, A., How, J.P.: Multi-task allocation and
path planning for cooperating UAVs. In: Cooperative Control: Models, Applica-
tions and Algorithms at the Conference on Coordination, Control and Optimiza-
tion. (November 2001) 1–19

10. Lagoudakis, M.G., Markakis, E., Kempe, D., Keskinocak, P., Kleywegt, A., Koenig,
S., Tovey, C., Meyerson, A., Jain, S.: Auction-based multi-robot routing. In: Proc.
of Robot.: Sci. and Syst. (2005) 343–350

11. Kuhn, H.W.: The Hungarian Method for the Assignment Problem. Naval Research
Logistic Quarterly 2 (1955) 83–97

12. Liu, L., Shell, D.A.: Physically routing robots in a multi-robot network: Flexibility
through a three-dimensional matching graph. 32(12) (2013) 1475–1494

13. Lee, T., Leok, M., McClamroch, N.H.: Geometric tracking control of a quadrotor
UAV on SE(3). In: Proc. of the IEEE Conf. on Decision and Control, Atlanta, GA
(December 2010) 5420–5425

14. Shen, S., Michael, N., Kumar, V.: Autonomous multi-floor indoor navigation with
a computationally constrained MAV. In: Proc. of the IEEE Intl. Conf. on Robot.
and Autom., Shanghai, China (May 2011)

15. Powers, C., Mellinger, D., Kushleyev, A., Kothmann, B., Kumar, V.: Influence of
aerodynamics and proximity effects in quadrotor flight. In: Proc. of the Intl. Sym.
on Exp. Robot., Quebec City, Canada (June 2012) 289–302

16. Lawler, E.: Combinatorial Optimization: Networks and Matroids. Dover Publica-
tions, Mineola, NY (2001)

17. Kuwata, Y., Teo, J., Fiore, G., Karaman, S., Frazzoli, E., How, J.: Real-time
motion planning with applications to autonomous urban driving. IEEE Trans.
Control Syst. Technol. 17(5) (2009) 1105–1118

