
An MDP-based Approximation Method for Goal Constrained
Multi-MAV Planning under Action Uncertainty

Lantao Liu1 and Nathan Michael2

Abstract— This paper presents a fast approximate multi-
agent decision theoretic planning method extended from the
well-known Markov Decision Process (MDP). Our objective is
to plan motions for a team of homogeneous micro air vehicles
(MAVs) toward a set of goals, such that each MAV at any state
at any moment follows an action policy toward a unique goal,
while considering action uncertainty. We pursue an efficient
formulation by first considering a deterministic abstraction
of the stochastic system based on approximate initial paths.
These deterministic and decoupled sub-problems are converted
to the stochastic domain and improved by individual agents or a
subset of agents. The resulting decoupled formulation requires
processing of a partial state space and enables online operation
given applications with emerging tasks.

I. INTRODUCTION AND RELATED WORK

A challenge when deploying teams of small-scale micro
air vehicles (MAVs) is consideration of the action uncertainty
that can arise due to environmental disturbances with impli-
cation on the ability of the team to follow the planned path.
This paper tackles motion planning and goal assignment for
multi-MAV systems while considering stochasticity of un-
certain action outcomes. Specifically, we develop a decision
theoretic planning method that guides a team of homoge-
neous MAVs with action uncertainty to avoid obstacles and
eventually reach mutually exclusive goals.

Motion (or trajectory) planning for autonomous robots has
been well studied [9, 17]. Deterministic path planners (e.g.,
A∗ or Dijkstra’s based algorithms) are efficient in terms
of computational performance; and many probabilistic path
planners (e.g., RRT or PRM based methods) perform well
in exploring high dimensional space [11, 12, 22]. However,
these methods do not always account for uncertainty and
therefore do not include the cost or penalty induced from
unexpected actions. Moreover, methods unaware of uncer-
tainty do not consider the MAVs’ deviation from planned
nominal paths. Arriving at any locations off the paths may
require a re-planning process if global optimality needs to
be guaranteed.

An extremely powerful tool, the Markov Decision Process
(MDP) has been widely-adopted for modeling autonomous
decision-making under uncertainty [1, 21]. However, the
MDPs become more complex and computationally expensive
when multiple agents need to be coordinated free of conflicts,

1Lantao Liu is with the Department of Computer Science at the
University of Southern California, Los Angeles, CA 90089, USA.
lantao.liu@usc.edu.

2Nathan Michael is with the Robotics Institute at Carnegie Mellon
University, Pittsburgh, PA 15213, USA. nmichael@cmu.edu

The work was conducted at Carnegie Mellon University. The authors
gratefully acknowledge the support of ARL grant W911NF-08-2-0004.

which are termed multi-agent MDPs (MMDPs) [3]. In order
to produce a collective behavior that accurately maximizes
the total expected reward for all agents, the most popular way
to model an MMDP is to expand the action space to a form
of joint action space contributed by all agents [3, 18, 20],
which requires much more computational effort than the
single agent case. Works that are related to this presented
approach also include the Decentralized MDPs (Dec-MDPs)
or more generally the Decentralized Partially Observable
MDPs (Dec-POMDPs) [2, 6]. A majority of efforts have been
focused on solving the interactions among agents, assuming
limited/indirect communication [8], imperfect and local ob-
servations [5, 19], or constrained agent behaviors [15, 18].

Different from approaches mentioned above, the objective
of our work is to generate action uncertainty aware policies
leading homogeneous MAVs to unique goals. Consequently,
the optimal solution is subject to several constraints: con-
trol policy optimization, goal assignment (goal constraints),
action uncertainty, and collision avoidance. Combining all
these constraints into one bulk mathematical program and
computing accurate solutions require examining all stochas-
tic outcomes over some (possibly infinite) horizon, which
can be computationally prohibitive.

One way to formulate the goal-constrained planning under
uncertainty problem is to unify the MDPs with task allo-
cation (assignment) mechanisms. For example, approaches
of [7, 10] formulate and address the problem in the fashion
of allocating distributed or loosely-coupled MDPs. In order
to adapt to the MDP model, the transition probability of [4] is
used to model the assignment uncertainty, i.e., the probability
distribution of assigned tasks in future. However, in such a
model neither action uncertainty nor trajectory planning is
considered, which is exactly the problem we wish to tackle.

In this paper, we are proposing a new approximation
framework for MMDPs. Our major objective is to improve
the computational efficiency for online application purposes,
without expanding neither the state space nor action space
(i.e., we do not use joint action space). In this way, com-
putational complexity is maintained at the level of the
single agent planning case. We achieved the efficiency by
first abstracting the stochastic problem into a deterministic
counterpart and obtaining an initial solution to decompose
the problem. Then the sub-problems are transformed back
to stochastic domain and solved by individual agents. We
validate important performances in simulation and show that
this approach is practically very fast and thus suitable for
real-time multi-agent systems and online applications with
emerging tasks.

II. RESEARCH BACKGROUND AND PRELIMINARIES

Let R be the set of MAVs and G be the set of goals, and
assume |R| ≤ |G|. With awareness of action uncertainty, we
wish to deploy the robots following certain control policies
such that no two MAVs share the same goal. We assume fully
observable states, therefore, such a planning framework can
be perfectly modelled with an MDP, as follows.

A. Markov Decision Process (MDP)

Definition 2.1: An MDP M is defined by a 4-tuple
M =< S,A, T, C >, where
• S is a countable set of states s.
• A is a countable set of stochastic actions a.
• Ta(s, s

′) = Pr(st+1 = s′|st = s, at = a) gives the
transition probability that an agent moves to a state s′

when it executes the action a from s .
• Ca(s, s

′) is a non-negative cost for performing action a
on s and reaching s′.

A control policy π is a complete mapping from states to
actions so that the agent applies the action at ∈ A in state
st ∈ S at time t. If the action is independent of time, the
policy is called stationary and it is simply denoted by a, as
assumed above. Starting from state s0 for infinite time t, let
the sequence of future actions be {a1, a2, · · · , at, · · · } and
the sequence of future states be {s1, s2, · · · , st, · · · }; then
the total value (cost) for state s0 over an infinite horizon can
be expressed as

V (s0) =

∞∑
t=0

γtCa(st, st+1), (1)

where at = π(st) and γ ∈ [0, 1] is a discount factor for
discounting future costs at a geometric rate.

Definition 2.2: The Q-value of a state-action pair (s, a)
is defined as the the one-step look-ahead value of state s if
the immediate action a is performed:

Q(s, a) =
∑
s′∈S

Ta(s, s
′)[Ca(s, s

′) + γV (s′)]. (2)

The MDP is to find an optimal policy π∗ satisfying

Vπ∗(s) ≡ V ∗(s) = min
a∈A

Q(s, a), ∀s ∈ S. (3)

When γ < 1, there exists a stationary policy that is optimal.
In this case, V ∗ is the unique solution to the Bellman
Optimality equations:

V ∗(s) = min
a∈A

∑
∀s′∈S

Ta(s, s
′)[Ca(s, s

′) + γV ∗(s′)]. (4)

From Eq. (4), the optimal action policy π∗(s) can be obtained

π∗(s) = argmin
a∈A

∑
∀s′∈S

Ta(s, s
′)[Ca(s, s

′) + γV ∗(s′)]. (5)

Employing Bellman’s principle of optimality avoids enu-
merating solutions naively. In particular, value iteration (VI)
and policy iteration (PI) are the most widely used dynamic
programming strategies for solving MDPs. In this paper, we
use VI as a substrate to develop a higher level multi-agent
decision theoretic planning framework.

(a)

(b) (c)

Fig. 1. (a) MAV action uncertainty model. Probabilities β1, β2 lead
to undesired states; (b) With standard single-agent MDP, MAVs greedily
choose their goals (green cells), causing conflicts; (c) Goal-oriented planning
generate policies leading MAVs to different goal states.

B. Stochastic Shortest Path and Goal-Oriented Trajectories

The discrete-time MDP targeting cost minimization for-
mulated in Sect. II-A can be extended to a stochastic shortest
path (SSP) problem [16], with an extra set of assumptions
from which the SSP derives its special properties.

Assumption 2.1: The state set of SSP includes
goal/terminal states. Each goal state sg ∈ S is zero-cost and
absorbing. This means that Ta(sg, sg) = Pr(sg|sg, a) = 1
and Ca(sg, sg) = 0, ∀a ∈ A.

If we wish to plan a trajectory leading to some specific
goal state sg , the trajectory is called a goal-oriented trajec-
tory, defined as below.

Definition 2.3: A goal-oriented trajectory from a start-
ing state s0 is a finite sequence s0, a0, s1, a1, · · · , sg , where
sg ∈ G is the specified goal at which the agent needs to
arrive [16]. The value V (si) of any state si under π is the
total expected cost that incurs before the agent reaches the
goal sg . A trajectory can be in the expected sense.

The policy computed for a goal-oriented trajectory is
termed a goal-oriented policy. We are especially interested
in stationary policies that reach a goal state with probability
1 from any initial state.

Although the MDP stochastic system described above al-
lows multiple goal states (absorbing states, Assumption 2.1)
to simultaneously exist, a direct employment of VI or PI on
the single-agent state/action space does not address the goal
assignment problem, and actually each MAV selects its goal
(and action policy) in a greedy manner. See Fig. 1 for an
illustration.

A popular way to integrate the goal assignment and the
MDP-based planning frameworks is to model each agent
with an MDP and then employ the task allocation strategy to
coordinate individual MDPs (e.g., see [7, 10]). However, this
requires the state space and action space to be augmented to
accurately include all possible outcomes (all combinations
of single-agent uncertainties) that may occur in all future
moments. In such case, the size of the state space and action
space can be increased to as large as |S|n and |A|n for n

(a) (b)

Fig. 2. (a) Stochastic system of MDP, where s represents state and a
denotes action; (b) The corresponding approximated deterministic graph.

agents, which makes the problem intractable even for a small
number of agents if the single-agent state/action space is
already large.

III. EFFICIENT PLANNING VIA APPROXIMATION AND
DISTRIBUTION

We propose a method without expanding neither the
action space nor the state space, such that the computational
complexity is maintained at the level of single agent planning
case. The time complexity is further improved by decoupling
the problem and distributing the computational efforts. At a
higher level, our proposed framework can be summarized
with four main steps:
(A.) Abstract the problem and approximate a solution.

Transform the stochastic system to a deterministic
counterpart, which simplifies and abstracts the problem
for an initial solution.

(B.) Decouple the problem. Find conflict-free deterministic
paths for all MAVs in an extremely fast manner with
existing deterministic solvers. Each agent obtains an
initial path and a corresponding sub-problem.

(C.) Convert back to stochastic domain. Starting from states
on the obtained initial path, each agent locally improves
policies via running VI on states nearby the paths;

(D.) Improve global solution. Check the feasibility of final
trajectories and adjust them hierarchically if necessary.

In greater detail, we present and discuss the four steps in
the following subsections.

A. Stochastic Problem Abstraction and Approximation

In this step, the MDP stochastic transition model is ap-
proximated with a deterministic graph.

Definition 3.1: The approximated deterministic graph
is defined as Gd = (V,E), where V corresponds to the
vertex set of all states and E is the edge set. Assume an
action a on state s transits to K possible states SK = {sk}
(k = 1, · · · ,K) each of which has a transition probability
Ta(s, sk) (

∑K
k=1 Ta(s, sk) = 1). The succeeding state with

maximal probability is chosen as the expected next state:

s′ = max
sk∈SK

Ta(s, sk) (6)

Then the corresponding deterministic edge e = (s, s′) ∈ E
is added with an expected edge weight:

w(s, s′) =

K∑
k=1

Ta(s, sk)Ca(s, sk). (7)

Fig. 3. Bipartite graph illustrating trajectory generation for one agent,
where V = {v1, v2, v3}, V ′ = {v′1, v′2, v′3}, Vs = {vs}, Vg = {vg}.
Matched edges are in red bold, others are unmatched edges; goal trajectory
vs—v1—v2—vg in Gd = (V,E) is obtained from the augmenting path
vs—v′1—v1—v′2—v2—vg in the matching graph G̃ = (V, V ′, Ẽ).

In essence, each action of such approximation has a greedy
impact—it transits to the state with the least immediate cost,
thus, a trajectory planned on such graph can be regarded as
the solution to a 1-step horizon planning problem (i.e., γ =
0). An example is shown in Fig. 2. In this way, the stochastic
property is eliminated and the resulted deterministic graph
abstracts the problem at a higher level and thus can be used
to compute initial approximated solutions.

B. Problem Decoupling via Deterministic Goal-Oriented
Trajectories

With approximated deterministic graph Gd, goal-oriented
trajectories for all MAVs can be computed via existing de-
terministic planning methods, which are strongly polynomial
suitable for online computations. Specifically, multi-agent
goal constrained trajectories planning is a multi-source multi-
goal (MSMG) shortest path problem. One efficient way to
solve a MSMG is through transforming Gd = (V,E) to a
bipartite (matching) graph G̃ = (V, V ′, Ẽ) [14]. The essence
is recapitulated as follows.

Briefly, a bipartite graph G̃ has two sets of nodes V and
V ′, where V ′ is simply a copy of V such that |V | = |V ′|,
and an edge ẽ = (vi, v

′
j) ∈ Ẽ connects the vertices vi ∈ V

and v′j ∈ V ′ if there is an edge e = (vi, vj) ∈ E ∈ Gd.
Edge ẽ = (vi, v

′
j) is weighted the same as the counterpart

edge (vi, vj)

w̃(vi, v
′
j) = w̃(v′i, vj) = w(vi, vj) (8)

Besides that, a set of edges (vi, v′i) is also added with weight
w̃(vi, v

′
i) = 0 for all states except the starts and goals.

A bipartite graph of this form well represents the as-
signment problem and can be solved by the Hungarian
Algorithm [13], which manipulates augmenting paths con-
sisting of matched and unmatched edges in order to find
a solution where each vertex in V is uniquely matched
(assigned) to a vertex in V ′ with the total cost minimized.
Our MSMG trajectories are obtained by transforming the
resultant augmenting paths back to the routing paths on Gd

via eliminating all vertices except the goals from vertex set
V ′ [14]. The concept is illustrated in Fig. 3.

It can be shown that the total length of all MSMG
trajectories is globally shortest. This is because only the
weights of matched edges are summed as feasible assignment
costs. Formally, let P denote the set of obtained MSMG
paths, since w̃(vi, vi) = 0 for all states except the starts
and goals, the sum of weight Sa in the assignment matching

(a) (b)

Fig. 4. (a) Local states fringing. Red lines are MSMG paths connecting
to goals (stars). The green circles are fringe states and the shaded area
represents local state space for the bottom-left MAV; (b) If path a → b
is locally optimal, the refined path c → d will not cross path a → b.
Otherwise, it contradicts the local optimality assumption of path a→ b and
its segment x→ y.

result is

Sa =
∑

∀(vi,vj)∈P

w̃(vi, vj) +
∑
∀vi /∈P

w̃(vi, vi) =
∑

∀(vi,vj)∈P

w(vi, vj),

(9)

which is exactly the total length of the MSMG routing
paths. Therefore, the global optimal assignment solution
corresponds to the globally shortest MSMG paths.

C. Policy Refinement of Stochastic Sub-problems

The problem is converted back to the stochastic domain
in this step. With the obtained MSMG paths P = {Pi}, each
MAV ri ∈ R grows a local copy of state set SPi initialized
from only those states on the path Pi, and incrementally
connects and adds new neighboring states, called fringe
states {sFi}, which can directly transit to SPi , as shown
in Fig. 4(a).

Remark 3.1: The fringe states stop growing when they
encounter states on a different path. In other words, the
nearby paths of neighboring MAVs form boundaries to the
local state sub-space (boundary states included). Therefore,
the global control policy only needs to be refined by MAVs
within their partitioned sub-spaces.

The rationale for Remark 3.1 lies in that, assuming the
nearby path is locally optimal, the path currently under
refinement will not become a path that goes beyond the
nearby path. This is because the Principle of Optimality [1]
states that any path segment on the (locally) optimal path
is also (locally) optimal. See Fig. 4(b) for an illustration of
this principle. (Note, since the boundaries constituted from
nearby trajectories may not be closed, a maximal number
of fringing steps can be preset to terminate the fringe state
growing process if such a condition occurs.)

Then, value iteration on SPi is carried out to refine
policies on the local states. Retrieving goal-oriented paths
based on updated policies yields refined trajectories, which
in turn form updated boundaries for local sub-spaces. This
procedure repeats until all trajectories and local policies
become stable.

It is worth noting that a goal-oriented path here is actually
a sequence of future actions, which form a “path” in an
expected sense, as mentioned earlier. It does not mean that
the MAV will absolutely follow such a path. Since every
state maps to an action, even if the MAV deviates from the

expected path, the (local) policy will guide the MAV to move
towards its allocated goal state.

Algorithm 1: Proposed Approximation Method

1 Convert the MDP stochastic transition system into a
deterministic graph Gd

2 On Gd, find mutually exclusive MSMG paths P = {Pi}
for all MAVs ri ∈ R

3 foreach path Pi ∈ P do
4 Get the set of waypoint states SPi ⊂ S on Pi
5 ∀sPi ∈ SPi , propagate values backward
6 Iteratively grow fringe states sFi from SPi until

states of another path are reached,
SPi ← SPi ∪ {sFi}

7 Execute Value Iterations on SPi

8 Retrieve improved trajectory P ′i
9 Stop iteration if P ′i and policy converge

10 Check the feasibility of final policies. If mutual
exclusiveness is violated between, e.g., paths
Pk,Pl ∈ P, improve them locally (goto Step 2).

D. Global Solution Improvement

The last step is to check the feasibility of the refined
trajectories and improve the global solution by interacting
between local solutions when necessary. The possible in-
feasibility comes from the violation of mutual exclusive
goal assignments. This happens since nearby paths, including
their goals, are included as fringe states during the refining
process. Thus set SPi contains multiple goals and it is
possible that the retrieved path leads to a new goal belonging
to another path, causing conflicts on this new goal.

To address this problem, conflicted MAVs are required to
combine their local state sets SPi , which consequently form
a local multi-agent goal-constrained planning problem. Then,
the conflicted MAVs need to solve this local problem follow-
ing similar procedures described above until the conflicts
are resolved, which addresses the global goal-constrained
planning for the whole multi-MAV system.

Finally, Algorithm 1 summarizes the proposed method.

IV. DISCUSSION AND ANALYSIS

Since this presented method is an approximated planning
strategy that aims at coordinating multiple MAVs, therefore
two related important properties need to be discussed: the
solution compared to the ground truth, and the collision
awareness (avoidance) from obstacles and other agents.

A. Construction of Optimal Solution for Comparison

For a multi-agent system with each agent subject to
uncertainty, directly computing the optimal solution is very
difficult. This is because each agent needs to consider the
uncertainty of others, and every agent plays a role as a
dynamic obstacle to other agents. Instead of formulating
the “ground-truth” as a complex mathematical program, we
decompose the problem into two sub-programs — a maxi-
mization sub-program (Eq. (10)) for computing goal-oriented

optimal policies and a minimization sub-program (Eq. (11))
for generating globally optimal trajectories that takes into
account goal assignment. Then the two sub-programs can be
computed in subsequent epochs along MAVs’ expected state
transitions.

Sub-program 1 :

Maximize†
∑
s

V πj (s) (10)

Subject to Ca(s, s) = 0, if s = sj ∈ G,
Ta(s, s) = 1, if s = sj ∈ G,

V πj (s) ≤
∑
s

Ta(s, s
′)[Ca(s, s

′) + γV πj (s)]

∀s ∈ S, a ∈ A.
Sub-program 2 :

Minimize
|R|∑
i=1

|G|∑
j=1

V
πj

ij (s)xij (11)

Subject to
|G|∑
j=1

xij = 1, i = 1, 2, · · · , |R|

|R|∑
i=1

xij ≤ 1, j = 1, 2, · · · , |G|

xij = {0, 1}.
More formally, in Sub-program 1, V πj represents the MDP

values of the goal-oriented policy for the j-th goal sj ∈ G,
which can be computed via VI in practice. Note, sj is set
as an absorbing state whereas all other goals are regarded
as normal states. Each agent acts as an obstacle to others so
that collision avoidance among agents is taken into account.
The value V

πj

ij (s) in Sub-program 2 denotes the expected
value between the i-th MAV and j-th goal when the MAV
is situated at state s.

The main steps for computing the ground truth are pseudo-
coded in Algorithm 2. Algorithm 2 needs to maintain a
vector of length |G| for each state s ∈ S to store goal-
oriented MDP values for all goals, requiring to run VI |G|
batches for every state. The |R| MAVs collectively construct
a |R|×|G| matrix, which can be used for task allocation with
time complexity of only O(|R||G|2) [13]. The task allocation
result then determines a goal-constrained optimal action for
each MAV, which drives the MAV to move to future states
leading to different goals. Algorithm 2 is repeated after MAV
enters a new state, with VI being re-executed every time to
dynamically update obstacle information, as each MAV acts
as a dynamic obstacle.

B. Collision Awareness
One natural question is if the proposed approach is also

aware of the dynamic obstacles. (More accurately, the colli-

†Reason for objective maximization: Let T be the Bellman Operator
such that the right hand side of Eq. (4) can be simplified as (TV)(s) =
mina∈A

∑
∀s′∈S Ta(s, s

′)[Ca(s, s′) + γV (s′)]. Operator T has mono-
tonicity property, i.e., V1 ≤ V2 ⇒ TV1 ≤ TV2. Eq. 4 can be expressed as
an inequality: V ≤ TV , which can be further chained as V ≤ TV ≤
T (TV) ≤ · · · ≤ TnV = V ∗ as n → ∞. The resultant inequality
V ≤ V ∗ indicates that the solution V ∗ is optimal when the vector V (s)
is maximized.

Algorithm 2: Ground-truth Multi-MAV MDP

1 foreach goal sj ∈ G do
2 Compute goal-oriented policy πj and values V πj (s)

using Value Iteration, ∀s ∈ S
3 if MAV ri ∈ R is situated at si then
4 Obtain goal-oriented policy values V πj

ij , ∀sj ∈ G
5 Construct assignment matrix Ma =

(
V
πj

ij

)
|R|×|G|,

∀ri ∈ R, sj ∈ G
6 Compute optimal assignment φ : R → G
7 foreach agent ri ∈ R do
8 Retrieve optimal action policy based on assigned

goal sj′ = φ(ri):
9 π∗i (si) =

argmin
a∈A

∑
∀s′i∈S

Ta(si, s
′
i)[Ca(si, s

′
i) + γV

πj′

ij′ (s
′
i)].

sion avoidance is in fact collision awareness in the stochastic
planning context, as it is extremely difficult for the absolute
collision avoidance with a guarantee due to the stochastic
nature of actions.)

Remark 4.1: The policies produced from our method al-
ways guide each MAV to the safest region while accomplish-
ing its assigned goal state, avoiding not only static obstacles
but also other agents.

For those static obstacles, the MDP model already takes
into account of them and they are avoided. The property
of dynamic obstacle awareness is due to individual agent’s
policy generation while solving the decoupled stochastic sub-
problem (Sect. III-C), where each agent treats the expected
trajectories of its nearby team members as boundaries/walls.
In other words, action policies computed by different agents
attempt to avoid the space that other agents are likely to visit,
and thus avoid possible future collisions.

V. EXPERIMENTS

We have validated the proposed method in simulation and
demonstrated it on our physical air vehicles. The planner
was run on a single core 1.60GHz Pentium processor with
2GB of memory, to emulate the onboard computing devices
mounted on the MAV systems.

Specifically, following the classic scenarios in MDP liter-
ature, we tessellated the environment into grids so that each
MAV is only allowed to move between adjacent grids. The
transition dynamic model is depicted in Fig. 1(a). We set
the transition probabilities as α = 0.8 and β1 = β2 = 0.1
(in practice, transition probabilities can be obtained from
offline disturbance testing), and fix the discounting factor as
γ = 0.9. In addition, each action induces a cost of 1 and the
ε value for VI is 0.1. Goal states are randomly generated with
some arbitrary positive values (representing utilities), and
obstacle states are preset with a negative value (representing
penalty); the values of all other states are 0-initialized.

Figure 5(a) demonstrates a miniature multi-MAV system
involving two micro air vehicles navigating towards des-

(a) (b)
Fig. 5. Experimental demonstration. (a) A miniature multi-MAV system
with two micro air vehicles whose states are fully observed by a motion
capture system; (b) Visualization of physical experiments where two MAVs
navigate to two goals (green grids) among a group of obstacles (black
blocks). Expected trajectories are planned across the safest regions.

ignated goal states and avoiding a set of obstacles. States
of MAVs are captured by a motion capture system so that
they are fully observable. Figure 5(b) is the visualization
of corresponding physical experiments, from which we can
observe that the trajectories are planned across the safest
areas, indicating the awareness of uncertain action outcomes.
Again, the trajectories here are planned in the expected sense.
It does not mean that the MAVs will absolutely follow them.
If an MAV deviates from its expected trajectory, the local
action policy of its situated state will still lead the MAV
towards its allocated goal state.

Figure 6 illustrates the process of policy refinements by
two MAVs. We can see that as local spaces partitioned by
deterministic MSMG paths are exploited, the policies (and
expected paths) are gradually improved to eventually avoid
obstacles and narrow spaces.

To evaluate the methods, we also conducted simulations
with more MAVs and a greater number of states.

(a) (b)

(c) (d)

Fig. 6. Two MAVs refine policies locally. (a) Deterministic MSMG paths;
(b)(c) As local spaces are exploited, the policies (and expected paths) are
improved to avoid obstacles and narrow spaces; (c) Final refined policies
and expected trajectories within the decomposed subspaces.

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Time performance comparisons (data from fifty trials). (a)(b)
Total time used for computing 50 epochs for the ground truth and the
approximation method, respectively; (c)(d) The time used for computing
the first epoch (the most expensive epoch); (e)(f) Average time for each
MAV in the two methods.

A. Run-time Comparison

We first compared the running time between the ground
truth and the proposed approximation method, by using the
same number of states. Figures 7(a) and 7(b) show the total
time used for computing 50 epochs (i.e., the goal-oriented
trajectory of each MAV contains 50 future actions) from
arbitrary initial states to an arbitrary set of goal states. The x
axis represents the number of MAVs, which is manipulated
from 5 to 20. The results clearly reveal that the approxima-
tion method requires significantly less overall computational
effort and time.

The stacked bars in Figures 7(c)–7(d) detail the time allo-
cation between algorithm components to compute the initial
epoch — the most expensive stage consists of three parts: the
time to construct the stochastic transition system, the time for
initial VI, and the time for computing the goal assignment
and retrieving goal-oriented trajectories. We observe that the
time scale of the ingredients greatly differs between the
two methods. For the ground truth method, the VI takes
bulk of the time; in contrast, the assignment computation
is an expensive component for the approximation approach.
This is because the MSMG trajectories computed from the
approximated deterministic graph require construction of an
assignment matrix of size (|S|+ |R|)× (|S|+ |G|), which is

Fig. 8. Comparison of solution quality reveals limited sacrifice of
optimality given the approximation method.

much larger than the assignment matrix in the ground truth
method. Since each MAV only needs to process partial state
space, the overall time used in the approximation method is
still much less than that of the ground truth.

Figures 7(e) and 7(f) compare average time used by each
MAV. Since we modelled both the proposed approximation
method and the ground truth method in a decoupled frame-
work, the computational workload can be carried out in a
distributed manner for both methods (here we do not consider
communication overhead). Figure 7(e) indicates that, the
majority of time used by individual MAV is still VI, but
the time is independent of the number of MAVs. In contrast,
the time used for local VIs in the approximation method
decreases as the number of MAVs grows. The histograms in
Figures 7(e) and 7(f) reveal that the approximation method
is at least eight times faster than the ground truth approach,
and the more MAVs, the more significant speed benefit in our
method. Such feature best applies to real-time multi-agent
systems and online applications.

B. Solution Quality Comparison

We then compared the solution quality of the proposed
approximation method against the ground truth optimal ap-
proach. The metrics here is the total cost for all multi-MAV
trajectories. From Fig. 8 we can see that the cost for the
approximation approach is slightly inferior to the ground
truth, indicating a tradeoff for the time efficiency obtained
from local policy approximations.

Therefore, without sacrificing much solution quality, the
approximation method significantly decreases the overall
computational workload, and greatly reduces the practical
runtime.

VI. CONCLUSION

We propose an efficient goal constrained decision theoretic
planning method for multi-MAV systems subject to action
uncertainty. By abstracting the stochastic transition system,
we are able to compute initial deterministic MSMG paths
that are then used for developing a decoupled approximation
approach. Our method requires that each agent execute
only local refinements and adjustments with consideration

of only a partial state space. The proposed approach yields
performance benefits including reduced computational effort,
leading to fast online operation, with limited impact on
solution quality.

REFERENCES

[1] R. E. Bellman. Dynamic Programming. Princeton University Press,
Princeton, NJ., 1957.

[2] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. The
complexity of decentralized control of markov decision processes.
Math. Oper. Res., 27(4):819–840, Nov. 2002.

[3] C. Boutilier. Planning, learning and coordination in multiagent deci-
sion processes. In Proceedings of the 6th Conference on Theoretical
Aspects of Rationality and Knowledge, pages 195–210, 1996.

[4] T. Campbell, L. Johnson, and J. P. How. Multiagent allocation of
markov decision process tasks. In Proc. of the Amer. Control Conf.
IEEE, 2013.

[5] J. Capitán, M. T. J. Spaan, L. Merino, and A. Ollero. Decentralized
multi-robot cooperation with auctioned POMDPs. In Proc. of the IEEE
Intl. Conf. on Robot. and Autom., pages 3323–3328, 2012.

[6] J. S. Dibangoye, C. Amato, and A. Doniec. Scaling up decentralized
MDPs through heuristic search. In Proc. of the Conf. on Uncertainty
in Artificial Intelligence, August 2012.

[7] D. A. Dolgov and E. H. Durfee. Optimal resource allocation and
policy formulation in loosely-coupled markov decision processes. In
ICAPS, pages 315–324, 2004.

[8] C. V. Goldman and S. Zilberstein. Communication-based decomposi-
tion mechanisms for decentralized mdps. CoRR, abs/1111.0065, 2011.

[9] G. M. Hoffmann, S. L. Wasl, and C. J. Tomlin. Quadrotor helicopter
trajectory tracking control. In Proc. of the AIAA Guidance, Navigation,
and Control Conf., 2008.

[10] H. Hosseini, J. Hoey, and R. Cohen. A coordinated MDP approach
to multi-agent planning for resource allocation, with applications to
healthcare. CoRR, abs/1407.1584, 2014.

[11] S. Karaman, M. Walter, A. Perez, E. Frazzoli, and S. Teller. Anytime
motion planning using the RRT∗. In Proc. of the IEEE Intl. Conf. on
Robot. and Autom., May 2011.

[12] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces.
Technical report, Stanford, CA, USA, 1994.

[13] H. W. Kuhn. The Hungarian Method for the Assignment Problem.
Naval Research Logistic Quarterly 2:83–97, 2:83–97, 1955.

[14] L. Liu and D. A. Shell. Physically Routing Robots in a Multi-robot
Network: Flexibility through a Three Dimensional Matching Graph.
Intl. J. Robot. Research, 32(12):1475–1494, 2013.

[15] L. Matignon, L. Jeanpierre, and A.-I. Mouaddib. Distributed value
functions for the coordination of decentralized decision makers. In
Proc. of the Intl. Conf. on Auton. Agents and Multiagent Syst., pages
1209–1210, 2012.

[16] Mausam and A. Kolobov. Planning with Markov Decision Processes:
An AI Perspective. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers, 2012.

[17] D. Mellinger, N. Michael, and V. Kumar. Trajectory generation and
control for precise aggressive maneuvers with quadrotors. Intl. J.
Robot. Research, 31(5):664–674, 2012.

[18] F. S. Melo and M. Veloso. Decentralized mdps with sparse interac-
tions. Artificial Intelligence, 175(11):1757 – 1789, 2011.

[19] F. A. Oliehoek, M. T. J. Spaan, S. Whiteson, and N. Vlassis. Exploiting
locality of interaction in factored Dec-POMDPs. In Proc. of the Intl.
Conf. on Auton. Agents and Multi Agent Syst., pages 517–524, 2008.

[20] P. Plamondon, B. Chaib-draa, and A. R. Benaskeur. A multiagent task
associated mdp (mtamdp) approach to resource allocation. In AAAI
Spring Symposium: Distributed Plan and Schedule Management, pages
89–96, 2006.

[21] M. L. Puterman. Markov Decision Processes: Discrete Stochastic
Dynamic Programming. John Wiley & Sons, Inc., 1st edition, 1994.

[22] M. Turpin, K. Mohta, N. Michael, and V. Kumar. Goal assignment
and trajectory planning for large teams of aerial robots. In Proc. of

Robot.: Sci. and Syst., Berlin, Germany, June 2013.

