
Tunable Routing Solutions for Multi-Robot Navigation via the
Assignment Problem: A 3D Representation of the Matching Graph

Lantao Liu and Dylan A. Shell
Department of Computer Science & Engineering

Texas A&M University
College Station, Texas, USA

Email: {lantao,dshell}@cse.tamu.edu

Abstract— Many multi-robot scenarios involve navigation of a
set of networked robots through a constrained environment to
achieve coverage, maintain a predefined shape, sense at prede-
fined locations, or to satisfy some other distance-defined property.
When new robots and tasks are added to a network of already
deployed interchangeable robots, a trade-off arises in seeking to
minimize cost to execute the tasks and the level of disruption to
the system. This paper examines a navigation-oriented variant
of this problem in which robots are physically routed through
an existing network. We propose a parametrizable method
to tune emphasis between minimizing global travel cost (or
energy, or distance), minimizing interruption (i.e., obtaining the
fewest number of robot reassignments), reducing travel distance
per robot, and completing all operations as soon as possible.
Since these are related optimization criteria, a single parameter
provides sufficient flexibility to balance between them.

Paths through the network are computed via a task-allocation
formulation in which destination locations of newly deployed
robots are added as tasks to an existing allocation. We adapt the
graph matching variant of the Hungarian Algorithm—originally
designed to solve the optimal assignment problem in complete
bipartite graphs—to construct routing paths in sparse networks.
We do this by constructing a three-dimensional graph that
incorporates logical aspects of the Hungarian bipartite graph,
and spatial elements of the Euclidean graph. The approach has
several useful features including being particularly effective at
generating multiple simultaneous, non-interfering paths. When
new agent-task pairs are inserted, the assignment is globally
reallocated in an incremental fashion so that it requires only
linear time when the robots’ traversal options have bounded
degree. The algorithm is studied systematically in simulation and
also validated with physical robots.

I. INTRODUCTION

Several problems, across a wide variety of application
domains, for which coordinated multi-robot systems are a
potential practical solution can be formulated as the task
of moving a team of mobile robots from a set of current
locations to a set of goal (or target) locations while minimizing
some collective cost. This paper examines an algorithm for an
incremental form of this problem: a set of tasks and robots
are added to a network of already deployed robots and the
objective is to use both newly added and existing robots to
cover the previous deployment locations in addition to the new
targets. This paper is a study of an efficient and flexible method
for solving the problem of deciding which robots should be
moved and to where. We call this the physical routing problem.

In order to demonstrate the generality of the underlying

optimization problem, we consider a few examples where one
may seek to compute a physical routing:

Deployment The work of Howard et al. [2002] is a good
illustrating example of this problem being applied induc-
tively to self-deploy a distributed sensor-actuator network.
The first sensor-actuator node (really a robot) picks a
location and moves to that position. Thereafter, nodes
are added one by one to a set of locations that fill the
space. The interchangeability of the robotic nodes means
that the robots move out in a breadth first fashion as if
emanating from a source.

Shape morphing Recently described by Topal et al. [2009],
this problem involves having a group of robots transition
smoothly from one shape to another in a cohesive way.
This can be tackled as follows: robots assess whether
their current position falls within the target shape or not;
if it does, they consider themselves part of the already
deployed system. The remaining robots are assigned new
target positions in the goal shape.

Ad hoc network repair Suppose that the currently de-
ployed robots form a wireless network, then newly added
robots can be deployed either to strengthen existing
connections or to occupy locations where failed robots
had previously been located. Global positions are not
necessary in order for the approach to apply in this case,
since movements generated as routing traversals along the
graph can be used for local gradient following on signal
strength in order to seek out useful positions. (This is the
problem which originally motivated this research as part
of the DARPA LANdroids project.)

There may be multiple satisfactory solutions to the physical
routing problem as described. Most simply, a newly added
robot may directly move toward the nearest new target. If
there are constraints on which robots may travel where, or
if the time required to reach all the targets is important, then
it may be better to have one of the already deployed robots
travel to the target and another robot fill the resultant vacancy.
With interchangeable robots, a whole chain of robots may
simultaneously move toward the target, with each robot taking
the place of the last. Thus, a robot is physically “routed”
through the network.

In optimizing system performance important aspects to
consider include the total distance travelled, the level of

disruption caused by redeploying robots and the time taken
to complete the traversal by all the robots. The relative impor-
tance of these aspects will depend on the particular scenario
and problem involved. This paper introduces a parametrizable
method which allows one to tune the path properties among
the set of performance criteria as desired. The formulation
considers a graph on which traversability costs and constraints
are encoded (via weights or omitted edges). The method
produces a routing in which a subset of the agents move along
edges toward target vertices. For the addition of a new agent-
target pair, the solution can be computed in linear time when—
as is frequently the case—the problem instance is represented
by a graph with bounded degree. Importantly, the method
allows simultaneous addition of multiple agents and targets;
we illustrate that sequential treatment (e.g., through repeated
execution of existing single source shortest path algorithms)
may fail to find the globally optimal solution. The approach
we employ is to compute the tunable routing by solving
an assignment problem over a bipartite graph (or bigraph)
derived from a graph representing the spatial locations of the
networked robots. The optimal assignment is then computed
on the (potentially incomplete) bigraph in an incremental
manner.

This paper contributes an efficient, tunable approach that
can adjust the optimization output to trade between individual
travel cost/time and system reallocation-disruption/shortest-
path solutions. The approach is based on extending the classic
Hungarian Method from dense (or complete) bigraphs to
operate on sparse bigraphs. These bigraphs arise through a
special construction of matching graphs from a Euclidean
graph encoding the network of robots and their traversabil-
ity constraints. This construction connects the conventional
matching problem with the routing problem. The matching
graphs that arise have a spatial interpretation, allowing one
to see how geometric properties are inherited from the un-
derlying Euclidean graph. They also maintain their logical
(or topological) features. We analyze the conditions under
which valid matching solutions are produced and how feasible
routing paths result. Intensive simulation and physical robot
experiments constitute the empirical validation of the proposed
method, including comparison with algorithms for computing
standard paths. In particular, the paper illustrates how the
approach can address the problem of concurrent multiple paths
arising from the insertion of multiple robots and targets.

II. RELATED WORK

In this section we review work that are related to the
proposed method. Since the proposed approach is a routing
method but is achieved by running an optimal assignment algo-
rithm —the Hungarian Algorithm— the review focuses on the
aspects of optimal assignment algorithms (with special focus
on the Hungarian Algorithm), popular uses of the assignment
problem in multi-robot systems, and routing methods derived
from assignment solutions.

A. Assignment Algorithms and the Hungarian Method

The multi-robot task allocation problem studies the problem
of assigning robots to tasks in order to maximize the perfor-
mance (or minimize the cost) of the whole team. Different
assignment models have arisen in order to formulate and
address differing task allocation scenarios (see Gerkey and
Matarić [2004] for a review). An important dimension within
the task allocation taxonomy is the cardinality of the mapping
between robots and tasks, viz., whether the assignment rela-
tionship between robots and tasks is one-to-one, one-to-many,
many-to-one, or many-to-many. In this work, we are interested
in the problem of assigning every robot to a unique task (one-
to-one mapping), which is the most basic and probably most
widely investigated assignment problem.

Numerous fast optimal assignment algorithms with time
complexity bounded by O(n4) have been proposed during
last century (see Burkard et al. [2009] for a review), among
which the most well-known algorithm is probably the Hun-
garian Method (or Hungarian Algorithm) that was invented
by Kuhn [1955] and refined by Munkres [1957]. While this
original algorithm is tableau based, the bigraph variant of the
algorithm with time complexity of only O(n3) has attracted
much research.

One useful feature of the Hungarian Algorithm is that it
can be executed incrementally. Toroslu and Üçoluk [2007]
proposed the incremental assignment algorithm that finds a
new solution with cost O(n2) after a new pair of vertices
and their incident edges are added to a weighted bigraph with
known matching. Motivated by examples in the transportation
domain, Mills-Tettey et al. [2007] proposed the dynamic Hun-
garian Algorithm to handle cost changes with time complexity
of O(kn2), where k is the number of cost changes. Both
incremental and dynamic Hungarian Algorithms can be easily
extended to address deletions with the same complexities.
We proposed the interval Hungarian Algorithm to assign
whilst evaluating the uncertainty in multi-robot task allocation
problems [Liu and Shell, 2011]: with an existing solution, the
interval algorithm needs an extra O(n3) to compute allowable
cost intervals within which cost perturbations will not violate
optimality of the current solution.

B. Optimal Assignment Problem in Multi-robot Systems

The problem addressed by this paper relates directly to re-
deployment of robots to tasks. Note that, here “redeployment”
means more than merely “reassignment”, because it includes
the control policy which produces patterns of motion among
the robots.

Work specifically addressing reassignment includes that of
Karmani et al. [2007] and Shen and Salemi [2002], both of
which consider assignment dynamics during the task commit-
ment and trade the local tasks whenever profitable. In Karmani
et al. [2007] a TSP (Traveling Salesman Problem)-like search
strategy is given whereas in Shen and Salemi [2002] heuristic
local searching algorithms are proposed. Decentralized reas-
signment research such as Ayanian et al. [2012] and Liu and

Shell [2012a] share similar basic ideas: an initial (possibly ran-
dom) assignment is assigned for the whole system then during
the task execution, small cliques can be formed under certain
rules (Ayanian et al. [2012] forms a small group constrained by
local communication whereas Liu and Shell [2012a] partitions
the system into appropriate sized cliques by processing the
cost matrix) so that robots inside a clique can refine the sub-
assignment problems.

Some formation control problems can also be regarded as
reassignment problems if one simply reassign those units with
a significant discrepancy in their current locations from the
final goal formation. Notable recent examples of formation
control include that of Michael et al. [2008], Ravichandran
et al. [2007], Ren and Sorensen [2008], and Alonso-Mora et
al. [2011]). Smoothly shifting from one shape to another,
sometimes called morphing, can be performed using the
method we describe but is approached in quite distinct ways
in the literature. For instance, Topal et al. [2009] morphs a
formation by capturing the network configuration by analyzing
adjacency matrix eigenvalues, and Elkaim et al. [2006] pro-
vides a lightweight artificial potential based method to control
individual node movement and globally morph the formation.
A clear, recent example of reallocation and formation work
together is that of Agmon et al. [2010]. The authors designed a
polynomial time graph-based method to extract a subset of the
robots from a coordinated group so that this subset can perform
a new task while minimizing the cost of the interacting with
the remaining group.

Several pieces of work on multi-robot systems have used the
Hungarian Algorithm to solve the assignment problem as part
of some more complex architecture for addressing problems in
a variety of domains. The vast majority of existing work does
not modify either the Hungarian Algorithm or the bigraph,
but simply provides the data to a solver to obtain matching
solutions (for example, see works of Wurm et al. [2008],
Elmaliach et al. [2009], and Liu and Shell [2012a]). Besides
the incremental approaches such as Mills-Tettey et al. [2007]
which dynamically deletes matched edges and inserts new
bigraph edges, and Liu and Shell [2011] which hides matched
(unmatched) edges in order to find the weight bounds within
which current solution remains optimal, a good example that
utilizes the bigraph structure is Giordani et al. [2010] in which
a communication protocol is designed to route along the
augmenting path in order to distribute the computation of an
assignment.

The work in this paper is also based on the bigraph
variant of Hungarian Algorithm and runs incrementally. An
important contribution of this work lies in a novel transform
and manipulation on the bigraph. More specifically, (1.) the
bigraph is sparse (also one byproduct of sparsity is the
linear time solution when the vertices have bounded degree),
(2.) the bigraph incorporates the spatial embedding and can
be interpreted in the three-dimensional space, (3.) a set of
parametrized edges allows the algorithm to yield differing
solutions that maps to different spatial routing trajectories.
Note that, we do not modify the Hungarian Algorithm but

simply employ it as a solver, although we do require that the
implementation of the Hungarian Algorithm handles sparse
bigraph and automatically halts if a solution does not exist.

C. Routing with the Assignment Solution

Many classic graph algorithms could be applied to compute
a redeployment routing. Well-known single source shortest
path (SSSP) methods, such as Dijkstra’s algorithm, can be used
to efficiently seek the shortest path between any pair of start
and goal vertices. Redeployment would involve all the robots
along this path moving one hop toward the goal. Although
not explicitly using Dijkstra’s algorithm, Howard et al. [2002]
employ an analogous technique via dynamic programming to
find a shortest path in their incremental deployment scenario.
However, these shortest path algorithms operate directly on
a form of two-dimensional graph with single optimization
objective or criterion.

The fact that a relationship exists between shortest path and
assignment problems was previously investigated with tech-
niques such as the general primal-dual methods [Papadimitriou
and Steiglitz, 1998] and optimal auction algorithms [Bertsekas,
1991; 1990]. These methods transform the assignment problem
to the single source single destination shortest path searching
problem and aim at solving the problem as fast as possible.
For example, a notable method of Bertsekas [1991] utilizes the
well-known auction method (an optimal assignment algorithm)
to search the shortest path on a directed graph. Distinct from
those approaches, this paper offers the following perspective:
spatial redeployment of a multi-robot team is achieved by
routing agents on the two-dimensional topology (a standard
undirected graph) but doing this by treating a construction
which is a three-dimensional representation of a corresponding
bigraph. Beyond the novelty of this representation, a primary
advantage of the approach is that it incorporates both (metric)
traversal information and reallocation (logical) costs simulta-
neously. The strength in the proposed approach is not merely
that short paths can be generated, but rather that one can
parameterize optimization criteria to trade among a set of
performance objectives.

Moreover, the characteristics of matching solution (i.e.,
assignment solution) reside in the matching graph guarantees
that the produced routing trajectories are conflict-free. Since
the Hungarian Algorithm is an optimal assignment algorithm,
the paths computed from it also possess the property of global
optimality, e.g., the overall travel cost can be minimized,
the number of robots redeployed can be the fewest, and the
number of conflict-free paths that are allowed can reach the
maximum.

III. PRELIMINARIES: DEFINITIONS AND BACKGROUND

This section provides background information required for
the remainder of the paper. First, the variant of the optimal
assignment problem related to this work is described and
formulated in Section III-A. In Section III-B we define and
describe the two graphs to which we have already alluded.
The detail of their relationship, which underlies the design

of the method, is presented in the section following these
preliminaries. The final element presented in this section is
the matching version of the Hungarian Algorithm, a famous
primal-dual assignment method. This forms Section III-C and
is intended both to aid subsequent discussion and to allow the
reader to make use of the paper in a standalone fashion.

A. Assignment Problem Formulations

The incremental variant of the assignment problem that we
focus on computes a matching between two distinct sets. This
form of assignment arises in task-allocation problems denoted
by SR-ST-IA in the Gerkey and Matarić [2004] taxonomy; the
assignment can be seen as a mapping from each robot to
exactly one task so that no two robots will be mapped to
an identical task. In detail, an assignment A for a multi-robot
system consists of a set of robots R and a set of tasks T .
Given a cost matrix C = (cij)n×n, where cij denotes the
cost of having robot i perform task j, the objective is to
find an assignment permutation ϕ : {i} → {j} such that the
overall cost c(ϕ) =

∑n
i=1 c(i, ϕ(i)) is minimized. Since the

cost of assigning robot i to task j can be different from that of
assigning robot j to task i, i.e., cij 6= cji, the cost matrix need
not be symmetric. To ease the analysis, we assume the sets
of robots and tasks have identical cardinality, |R| = |T | = n,
although the algorithms described herein handle cases with
|R| < |T | too. In fact, we take special care to consider
assignment scenarios in which an underlying matching graph
is sparse.

This matching problem can be formulated equivalently by a
pair of linear programs. The first is the primal program, which
is a minimization formulation:

minimize fp(x) =
∑
i

∑
j

cijxij ,

subject to
∑
j

xij = 1, ∀i,∑
i

xij = 1, ∀j,

xij ≥ 0 ∀(i, j),

(1)

where an optimal solution eventually is an extreme point of
its feasible set (xij equals to either 0 or 1 in the solution).

The constraints
∑

j xij = 1 and
∑

i xij = 1 capture the
mutual exclusion property which restricts each robot to be
assigned to exactly one task and each task to be allocated
to an unique robot, respectively.

There are corresponding dual vectors p = {pi} and
q = {qj}, with dual linear program:

maximize fd(p,q) =
∑
i

pi +
∑
j

qj , (2)

subject to pi + qj ≤ cij , ∀(i, j). (3)

The duality theorems show that a pair of feasible primal
and dual solutions are optimal if and only if the following
is satisfied:

xij(cij − pi − qj) = 0, ∀(i, j). (4)

This complementary slackness equation reveals the property
of orthogonality between the primal and dual variables.

B. Graph Representations

This work is based on two graphs: the Euclidean graph and
the bipartite graph (or bigraph for short).

What we term the Euclidean graph is a standard graph
G = (V,E) with a metric embedding so that the vertices in V
describe locations and edges in E express distances between
the vertex pairs. We let each vertex of G denote an agent, and
let w(i, j) = d(i, j) represent the weight of edge e(i, j) ∈ E,
where d(i, j) is the travel distance between agent pair (i, j).
In addition, we observe that traversability constraints, limited
sensing/communication ranges, and so on, mean that the graph
G is likely to be sparse.

We call the graph describing logical aspects of the matching
problem the bigraph. This is a graph G̃ = (X,Y, Ẽ) whose
vertices can be divided into two independent sets X and
Y such that every edge ẽ(x, y) ∈ Ẽ connects a vertex
x ∈ X to one y ∈ Y . In our problem, bigraph G̃ is
another representation for cost matrix C = (cij)n×n, where
X and Y respectively denote the set of agents and tasks,
and the set Ẽ = {ẽ(i, j)} are edges weighted by the costs
(w̃(i, j) = cij = d(i, j)) between associated agent-task pairs
(i, j).

In a bigraph, a matching is a set of edges such that no
two edges share a vertex in common. A perfect matching is
a matching which matches all vertices, i.e., each vertex of
the bigraph is on a unique matching edge. Since the bigraph
represents matchings naturally, sometimes it is also called the
matching graph.

C. O(n3) Hungarian Algorithm with Matching Graph

The Hungarian Algorithm can efficiently solve an n × n
assignment problem in O(n3) time. It is presented using
the bigraph representation in Algorithm 1. The assignment
problem is a matching problem where the goal is to find a
maximally weighted perfect matching M . This implies that
each agent in X is uniquely assigned to a task in Y .

Equation (4) gives conditions for optimality as the product
of two factors. There are three cases:

1) xij = 1 and cij − pi − qj = 0. The associated edges
ẽ(i, j) ∈ Ẽ are termed matched edges.

2) xij = 0 and cij > pi + qj . Edges satisfying these
conditions are called unmatched edges.

3) xij = 0 and cij−pi−qj = 0. These edges are unmatched
but should be seen as potential candidates which may
become matched.

An edge ẽ(i, j) that satisfies cij − pi − qj = 0 is called
admissible (either matched or potentially matched) and is
recorded in the so-called equality graph Ge during execution
of the Hungarian Algorithm.

The Hungarian Algorithm grows a matching by searching
for a path, called an augmenting path, which has an alternating
sequence of matched and unmatched edges with free end

Algorithm 1 The Hungarian Algorithm
Input:

An n× n assignment matrix represented as the complete
weighted bigraph G̃ = (X,Y, Ẽ), where |X| = |Y | = n.

Output:
A perfect matching M .

1: Initiate dual variables by pi(x) = min∀j{cij} and qi(y) =
{0},∀i ∈ [1, n]; Initial matching M = ∅.

2: If M perfect, terminate algorithm. Otherwise, randomly
pick an exposed vertex u ∈ X . Set S = {u}, T = ∅.

3: If N(S) = T , update values of dual variables:
δ = min∀x∈S,y∈Y \T {w̃(x, y)− p(x)− q(y)}
p(x) = p(x) + δ if x ∈ S,
q(y) = q(y)− δ if y ∈ T ,

4: If N(S) 6= T , pick y ∈ N(S) \ T .
(a) If y exposed, then u y is an augmenting path,

then augment matching M and go to step 2.
(b) If y matched, say to z, extend the tree: S ← S

⋃
{z},

T ← T
⋃
{y}, and go to step 3.

Notes & Definitions:
• w̃(x, y) = cxy , is the weight of edge ẽ(x, y).
• N(u) = {v | ẽ(u, v) ∈ Ge}, where Ge = {ẽ(x, y) |
p(x) + q(y) = w̃(x, y)} is the equality graph. If S is
a set, N(S) =

⋃
∀u∈S N(u).

(a) (b)

Fig. 1: An illustration of an augmenting path. (a) a sequence of
alternating matched (bold) and unmatched (non-bold) edges, with the
first edge and last edge unmatched. Such paths possess an odd number
of edges and an even number of vertices; (b) the set of matched edges
is augmented when the matched and unmatched edges are flipped.

nodes, as illustrated in Fig. 1. The algorithm augments the
size of a matching by simultaneously flipping the matched and
unmatched edges in the augmenting path, so that all matched
edges become unmatched whereas all unmatched edges be-
come matched. (Formal definitions of these operations on
matchings are omitted, we suggest the reader refer to [Lovász
and Plummer, 1986] for a detailed treatment.) In Algorithm 1,
steps 2 to 4 describe the procedure of seeking and flipping an
augmenting path. We call a single iteration of this procedure
a stage (see Fig. 2). Note that each stage finds exactly one
augmenting path which increases the size of the matching by
exactly one edge. Thus, the algorithm requires at most n stages
to obtain all n matched edges, thereby forming the optimal
assignment solution.

The algorithm is known to work well on the complete
bigraph (with n× n edges) and we show it also works for
some non-complete bigraphs under appropriate conditions. We

use the term sparse bigraph if a bigraph has |E| < n2.

Theorem 3.1: For any sparse bigraph with sets of cardi-
nality n (|X| = |Y | = n), the Hungarian Algorithm proceeds
without halting until it successfully outputs an optimal solution
if and only if there is an edge set Ẽs ⊆ Ẽ with cardinality
|Ẽs| = n and satisfying:

xij = 1, ∀(i, j) |ẽ(i,j)∈Ẽs
,

n∑
i=1

xij = 1, ∀j,

n∑
j=1

xij = 1, ∀i.

(5)

Proof: Necessity follows the constraint definition of the
assignment problem. Thus, consider sufficiency: |Ẽs| = n
implies that there must be at least n edges in the bigraph.
We can prove sufficiency by considering two cases:

1) If the number of edges |Ẽ| = n and all corresponding
xij satisfy (5), this indicates each vertex in the bigraph
has unit degree, thus, the n edges form a set which is
a perfect matching. This must be an optimal solution
on the basis of the property underlying the optimality
condition of the Hungarian Algorithm itself.

2) If n < |Ẽ| < n2, and there is a subset {ẽ(i, j)} that
satisfies (5), then the Hungarian Algorithm can only
fail to produce an optimal solution because it halted
before finishing all n stages. Such an interruption may
only occur because it failed to find an augmenting path.
Failure to find an augmenting path must mean that only
an incomplete path with odd number of vertices exists.
Equivalently, the bigraph is not fully connected and there
are isolated sub-graphs. This contingency is illustrated
in the sub-graph formed with a1, a2 and t2 in Fig. 3(b).
It is impossible to find a perfect matching in sub-
bigraphs with odd numbers of vertices and, therefore,
it is impossible to find a global matching solution for
the whole bigraph. Thereby, this contradicts (5).

It has been noted elsewhere that adding dummy edges
can convert a sparse bigraph to a complete (dense) bigraph.

(a) (b)

Fig. 2: (a) Two matched edges found after running two stages of
the Hungarian Algorithm; (b) A perfect matching consisting of three
matched edges is found after one additional stage (by augmenting
path a3 → t2 → a1 → t1).

(a) (b)

Fig. 3: (a) A matching in a sparse bigraph (weights have been omitted
for maximum clarity). In this example, the matching solution is
unique as shown in the bold edges, and forms the optimum; (b) The
algorithm halts on this arrangement since no augmenting path is
rooted at a2. No perfect matching is found.

Dummy edges have the potential to become matched edges
(and must do so, if the condition in Theorem 3.1 is violated)
requiring additional special handling. With an implementation
of the Hungarian Algorithm that takes as input a sparse
bigraph form, the possibility of the solution being obtained
on precisely those edges is determined automatically.

Two corollaries follow directly:
Corollary 3.2: In a sparse bigraph, a Hungarian stage con-

tinues without halting if and only if an augmenting path can
be found connecting a free pairwise agent and task.

Corollary 3.3: In a sparse bigraph, newly introduced agents
and tasks can be incrementally assigned if and only if (i) one
can connect the pairs to the already built bigraph (i.e., the
bigraph property still holds after connection); and (ii) one can
find augmenting paths between the sets of newly introduced
agents and tasks.

IV. FROM THE ASSIGNMENT PROBLEM TO ROUTING

Suppose that the configuration of the robots after their initial
deployment is given as a Euclidean graph G = (V,E): robots
at deployment locations are represented as vertices v ∈ V , and
edges e(u, v) ∈ E connect the location pairs that they can
move to and are weighted by travel distances. Then when new
agents and target positions are inserted at different locations,
the objective is to compute a redeployment policy that ensures
every target is efficiently serviced by a robot. One solution is
to seek a sequence of robots so that each replaces the next
to reach the target deployment configuration. This form of
solution is what we term a “routing” because, much like a
packet in a network, it can be visualized as the movement of
a virtual baton which is propagated along a path. Of course,
movement of this set of robots, in which each robot in the set
moves to the location previously allocated to the next robot,
may even occur concurrently to reach the target configuration
efficiently.

The essence of this work is to synthesize a bigraph so
that the matching for the optimal assignment problem on
that bigraph is a routing solution. This method brings both
spatial properties (from the geometry of Euclidean graph’s
embedding) and logical properties (represented in the bigraph)
into consideration simultaneously. The attractive features that

result include being able to parameterize optimization criteria
and the ability to seek solutions for multiple new agents and
tasks.

A. Matching Graph with Spatial Geometry

Conventionally, the bigraph G̃ = (X,Y, Ẽ) and matchings
computed on it have a topological interpretation. Even when
they are weighted, nothing is assumed about the meaning of
the edges themselves. Unlike the edges in the Euclidean graph
G = (V,E), which have geometric information, the matching
edges in the bigraph represent only a logical description as
they encode an assignment.

However, being undirected graphs, both have a common
characterization: both the Euclidean graph and the bigraph can
be represented with matrices: G can be represented with a
symmetric adjacency matrix with w(i, j) as entries, and G̃
can be represented with a non-symmetric cost matrix with
w̃(i, j) as entries. This suggests that, potentially, the bigraph
may express spatial information if the cost matrix is symmetric.
Thus, we let all off-diagonal entries of the two matrices have
the following relationship:

w̃(i, j) = w̃(j, i) = w(i, j) = w(j, i),

∀i 6= j, 1 ≤ i, j ≤ n,
(6)

and thereby encoding a cost matrix which has become sym-
metric.

For an already deployed system with n robots, the cardi-
nalities of vertices in G and G̃ satisfy

|V | = n and |X|+ |Y | = 2|V |, (7)

and the cardinalities of edges in G and G̃ satisfy

|Ẽ| − n = 2|E|. (8)

If we ignore the special n bigraph edges corresponding to
the matrix diagonal entries for the moment, then Equations (7)
and (8) show that both the vertices and edges are doubled when
we relate those in G̃ to those in G. This relationship is the
basic idea for the construction capable of unifying the two
graph. Specifically, we obtain a mapping Ω : G → G̃ where,
with known G = (V,E), the mapping G̃ = Ω(G) = (X,Y, Ẽ)
can be obtained in these steps:

1) Make a copy of vertices, V ′ = V , and let

X = V and Y = V ′. (9)

2) Add the bigraph edges:
∀(i, j) |e(i,j)∈E,i,j∈V ,

Ẽ ← {ẽ(i, j), ẽ(j, i)}, i ∈ X, j ∈ Y,
w̃(i, j) = w̃(j, i) = w(i, j).

(10)

3) Add the special bigraph edges that correspond to the
matrix diagonal:

Ẽ ← Ẽ ∪ {ẽ(i, i)}, ∀i ∈ V . (11)

The weights of these special edges are defined in a
parametrized manner, as described below.

This graph may be imagined as if an identical copy of the
Euclidean graph G had been created and placed over G. We
can visualize it as if the copy is lifted so as to float above the
first graph. Via this “extrusion” a three dimensional mesh is
formed with two identical layers plus edges that connect the
layers. Here the two layers correspond to the two partitions
of a bigraph, i.e., the bigraph vertex sets satisfy X = Y =
V . Each edge e(i, j) ∈ G is replaced with a pair of edges
ẽ(i, j) ∈ G̃ and ẽ(j, i) ∈ G̃. (Note: unlike edges in G, in G̃
edges ẽ(i, j) 6= ẽ(j, i) since i, j are nodes from different vertex
sets — either X or Y .)

An example is illustrated in Fig. 4(b). In the remainder
of the paper we adopt the convention that the vertices X in
the top layer represent the agent set and vertices Y in the
bottom layer denote the task set. Since nodes of either layer
are copies from the Euclidean graph, this synthesized graph
thus also conveys information about the spatial locations (top
layer describes the agent locations, and bottom layer describes
the task locations). If an agent node is matched to a task node,
the agent needs to move from its current location to the newly
assigned task location and, when a pair of agent and task nodes
are vertically aligned, one can simply imagine that the agent
has reached its deployed location and completed the position
shift. We term such vertically aligned edges vertical edges.
When these vertical edges are part of the matching, the agents
have no need for relocation.

Because this synthesized graph is a matching graph, we call
it the 3D bigraph and continue to use symbol G̃ to denote it.
The matching of a 3D bigraph is initiated with only those well
aligned vertical edges whose weights are predefined to satisfy
the constraints of matched edges. We return to these details
of matched edges later; it is important that we first examine
properties of the 3D bigraph itself.

B. Redeployment Routing for Inserted Agents and Tasks

When new agents and targets are inserted, the objective is
to seek a redeployment policy that ensures every target is
quickly serviced by an agent. A redeployment policy for a
newly inserted agent-task pair can be represented as a path
with two ends connecting the agent and task respectively; this
forms a chain in which agents may move, replacing one other,
and ultimately reaching the target location.

Suppose that a set of agents A and a set of task locations
B are inserted into the current 3D bigraph G̃ = (X,Y, Ẽ).
Assume that they are not collocated with an existing entry
in G̃ and, thus, are also unmatched. Then the new bigraph
G̃′ = (X ′, Y ′, Ẽ′) becomes:

X ′ = X ∪A and Y ′ = Y ∪B, (12)

and
Ẽ′ = Ẽ ∪ ẼA ∪ ẼB , (13)

where ẼA, ẼB are edges that connect vertices sets A↔ Y ′,
B ↔ X ′ within the traversal (or sensing, or communication)
ranges, respectively. Note that the symmetry of the 3D bigraph

(a)

(b)

Fig. 4: The mapping from a Euclidean graph to a 3D bigraph. (a) A
Euclidean graph of networked robots with only nearest neighbors
connected. Vertices 6 and 6′ are newly inserted agent and task,
respectively; (b) The corresponding sparse bigraph visualized in 3D.
Bold red edges on top layer do not exist but just show the projection
relationship with graph in (a).

edges does not apply to the newly inserted edges. This is clear-
est in an example, see the dashed edges shown in Fig. 5(a):
besides a newly inserted agent-task pair connected with dashed
lines, all other agent-task pairs are previously deployed and
hence matched. The existing matching can be seen as thick
vertical lines. This also indicates that the Hungarian Algorithm
need only incrementally assign the newly inserted agents, with
|A| (for simplicity, suppose |A| = |B|) stages of the algorithm.
Once all the agents are assigned and new augmenting paths
have been found, the routing paths are obtained by projecting
the augmenting paths in 3D bigraph to either planar layer.

Next, we discuss the example in Fig. 5 in greater detail,
showing how the Hungarian bigraph encodes the routing
problem with one agent-task insertion. In Fig. 5(a), a new
agent-task pair, (a4, t4), is added to an existing matching graph
with bold edges showing the previous matching. A single
incremental Hungarian stage produces the new assignment
solution shown in Fig. 5(b). The 3D bigraph in Fig. 5(c) is the
same matching graph as in Fig. 5(b), but reveals the spatial
relationship between the agents and task locations: the vertices
in the top layer are the agents currently assigned or to be
assigned, while the vertices in the bottom layer represent the
task locations allocated or to be allocated. An augmenting path

(a) (b)

(c)

Fig. 5: The bigraph representing a single-pair routing problem
(weights omitted). (a) An existing bigraph with perfect matching
(bold edges) is supplemented with a new agent and task; (b) A
new perfect matching is found after a single stage of the algorithm;
(c) When the tasks and agents are actually planar locations then the
bigraph picture is more precisely viewed in 3D, the top layer shows
the resulting routing solution.

starting from the inserted agent and ending with the inserted
task provides the routing path in the projected Euclidean graph.
In this example, the augmenting path a4→ t1→ a1→ t2→
a2→ t4 means that agent a4 should move to task location t1,
and a1 move go to t2, and a2 to t4. This is the routing path in
the Euclidean graph and is shown with dashed arrows in the
top layer in Fig. 5(c).

Theorem 4.1: So long as the graph G = (V,E) for the
routing problem is connected, there are always augmenting
paths in G̃ = Ω(G) between pairwise vertices.

Proof: Since a routing path P : s g (connecting a
start node s and a goal node g) in G is also a simple graph
without any cycles, P can be denoted as P = (V p, Ep) ⊆
G = (V,E). The 3D bigraph mapped from the path P can
be obtained by G̃p = Ω(P), where G̃p can be written as
G̃p = (Xp, Y p, Ẽp) ⊆ G̃ = (X,Y, Ẽ). Since all vertical edges
ẽp(i, i) ∈ Ẽp are matched and all non-vertical edges ẽp(i, j) ∈
Ẽp (i ∈ Xp, j ∈ Y p, i 6= j) are unmatched, an augmenting
path with alternate unmatched and matched edges must be
found in G̃p. The connectedness of graph G means a routing
path exists between any two vertices s, g ∈ V , indicating that
we can always find an augmenting path for the corresponding
vertices pair in G̃.

This indicates that one may simply connect the newly
introduced agent-task pair with a given connected graph and,
with Corollaries 3.2 and 3.3, the Hungarian Algorithm must
yield a path that corresponds to the optimal assignment.

V. CONTROLLING PROPERTIES OF THE ROUTING PATH

The preceding section showed that inserting any agent-task
pair to an already deployed system must result in a path that
connects them. However, in most cases there will be more
than one path through the graph that connects the agent and
task pair. Since the different paths are likely to have different
properties, selection of one over another should consider the
desired behavior and expected performance considerations
carefully. We are interested primarily in the following four
properties of the resultant routing paths:

1) The total travel cost which is usually proportional to the
length of the path or the total energy consumed.

2) The total number of agents to be redeployed, since
usually each agent reassignment bears a cost. At the
very least, this cost involves interruption and preempted
of the previously executed tasks.

3) The average travel distance for individual agents. Rede-
ployment may seek to balance the energy consumption
across the robot group.

4) The global finishing time or the time at which all rede-
ployments have been successfully completed, (i.e., the
elapsed time until every redeployed agent has reached
its newly allocated task location).

These properties can be understood in terms of distinct
metrics: the Euclidean distance captures aspects of travel
costs, while the hopping (or geodesic) distance quantifies
the number of edges in the path and, therefore, measures the
number of nodes involved (and interrupted) in the deployment.

In this section, we first introduce a method for controlling
the generation of paths for the case of insertion of a single
agent-task pair. The method involves manipulating the cost
matrix itself. We then extend the single agent-task pair case to
the general case where multiple agents and multiple tasks are
inserted simultaneously, and show how paths with attractive
properties result.

A. Parametric Matrices

Although construction of the bigraph has been described
in some detail, the edge weights corresponding to the matrix
diagonal have not yet been specified. One can interpret their
significance as the “state energy” of the agents once they reach
their target locations, and the lower the energy, the more stable
(harder to disrupt) the agents in the system.

To maintain a vertical pairwise agent-task matching for
all agents, we assign each vertical edge of the bigraph a
weight of at most the minimal cost of all outgoing edges. This
also ensures that the feasibility of a perfect matching in the
bigraph is always maintained (see constraints of Program (2)).
Formally, if any cij in a cost matrix C = (cij)n×n satisfies
0 ≤ cii ≤ min∀j 6=i{cij}, all vertical edges (ẽ(i, i), ∀i) form
a perfect matching. This is because each cost on the matrix
diagonal is the minimum value of row in which it resides,
each agent’s task on the diagonal is the task which produces
the global least cost and also satisfies the mutual exclusion
requirement.

(a) λ = .1—.4 (b) λ = .7

(c) λ = .8—.9 (d) Multiple insertions.

Fig. 6: (a)—(c) Examples of routing results under different λ values;
(d) The routing paths of two inserted agent-task pairs.

So it is clear that suitable choice of the diagonal values
can ensure that the existing deployment has a straightforward
optimal matching. But the weights of the vertical edges have
a more general interpretation too: they may play a role in
determining the degree to which the current assignment may
be disrupted, i.e., the smaller the value of cii, the more likely
that edge ẽ(i, i) will remain matched in subsequent Hungarian
stages and vice versa. (Note that here the argument is in
terms of a dense matrix, but if ẽ(i, j) /∈ Ẽ, it is marked
unavailable and cannot be used in Hungarian Algorithm.)
Let diag(C) = diag(c11, c22, · · · , cnn) denote the diagonal of
matrix C. Then, with scaling parameter λ, we obtain a new
diagonally scaled cost matrix:

C ′ = C + (λ− 1)diag(C)

=

λc11 c12 . . . c1n
c21 λc22 . . . c2n

...
...

. . .
...

cn1 cn2 . . . λcnn

 .
(14)

Only the diagonal is scaled in C ′, viz., diag(C ′) =
λdiag(C). Since we initialize each cii with cii = min∀j{cij},
by tuning λ ∈ [0, 1], the diagonal costs vary as c′ii ∈ [0, cii].
The rationale for using interval [0, 1] is provided below.

Next we use the example in Fig. 4(a) to demonstrate how
this affects the resultant routing. Vertices 0–5 are previously
deployed agents and Vertices 6 and 6′ are the newly introduced
agent and task, respectively. Fig. 6 shows different paths as a
function of λ, and Table I provides statistics for total path
length, number of redeployed/reallocated robots, average path
edge length, and the finishing time (which is proportional
to the longest edge length). It is interesting to compare the
difference between the sparse and dense graphs. The same
scenario was considered on the dense graph constructed from
Fig. 4(a), where each vertex is connected to all other vertices.

The statistics for this dense graph are shown in Table II. Table I
and Table II are similar except when λ ∈ [0, 0.4]. This is
explained by the fact that in the dense graph new longer edges
directly connect distant agent-task pairs and, correspondingly,
shorter alternative paths can be found. The similarities between
the sparse graph and dense graph solutions reflect the fact that
edges connecting nearest neighbors, despite producing a sparse
graph, permit most paths to be captured. This result is very
useful for practical applications because a sparse graph with
only the nearby neighbors connected is easy to obtain when
the edges represent the sensing or communicating links.

TABLE I: Sparse Graph Paths

λ
Total Redeployment Average Finishing

Length Number Length Time
0–.4 4.8 1 2.4 2.5
.5–.6 5.3 2 1.77 2.5
.7 6.3 3 1.58 1.8

.8–.9 7.2 4 1.44 1.5
1 8.3 5 1.38 1.5

TABLE II: Dense Graph Paths

λ
Total Redeployment Average Finishing

Length Number Length Time
0–.3 4.3 0 4.3 4.3
.4 4.8 1 2.4 2.5

.5–.6 5.3 2 1.77 2.5
.7 6.3 3 1.58 1.8

.8–.9 7.2 4 1.44 1.5
1 8.3 5 1.38 1.5

From Table I and II we can see that, as parameter λ varies
from 0 to 1, two trends manifest themselves. Both the total
travel distance and the number of redeployed robots mono-
tonically increase, whereas both the average travel distance
and finishing time decrease monotonically. These properties
are derived from one source, the hopping distance, i.e., the
number of edges in the routing path:
• The disruption caused by the introduction of robots and

tasks can be measured by the number of redeployed
robots, which is the hopping distance minus 1.

• The total travel distance, viz., the sum of edge lengths
in the path, is well approximated by the hopping dis-
tance in Euclidean graphs when neighbors within the
some disk — e.g., communication or sensing range — are
connected (cf. analysis in Liu et al. [2011]);

• When the multi-robot system is uniformly distributed in
space, the average travel distance (average edge length of
a path) is inversely proportional to the hopping distance.

• Similarly, the finishing time (the longest edge length) is
inversely proportional to the hopping distance too.

Extensive experiments are provided with further evidence of
these facts, and are presented in the next section on experi-
mental results.

B. Multiple Robot-Task Insertions Producing Multiple Paths
When multiple pairs of agents and tasks are introduced

simultaneously (i.e., |A| > 1, |B| > 1|), multiple paths

must be produced to ensure each element of B is adequately
serviced. One straightforward way to do this is by adding
pairs sequentially. This produces a sequence of paths, each
generated with the addition of a single pair, one after the
other. Because the paths are generated individually, there may
be interference between paths and robot motions may have
to be constrained to ensure they do not occur simultaneously.
Correctness technically requires that navigation for a routing
should only commence once the actions needed for execution
of the preceding path have been completed. Naturally, this
process of serialization of the navigation limits the system’s
concurrency and hence performance. (Despite the potentially
long wait, this is essentially the method used for deployment
in Howard et al. [2002].) Another drawback of the sequential
scheme is that the performance may depend on the ordering of
agent-task pair insertions and it is easy to produce scenarios
which naı̈ve orderings result in poor routing solutions.

While sequential application of the algorithm is possible, we
show how concurrent treatment of batches of agents and tasks
is possible and that one can produce paths that are globally
efficient. This works by virtue of the matching on the 3D
bigraph being optimal. In doing this, we identify the forms of
interference that may occur between paths and illustrate that
these forms are absent when paths are generated using the
proposed approach. This allows deployment to be carried out
concurrently by each of the agents and avoids the problem of
serializing traversals.

(a) (b)

Fig. 7: Neither node nor edge will be shared among multiple paths
produced from a matching graph. (a) Assumption of a shared node 0
at the crossing of path 1→ 0→ 2 and path 3→ 0→ 4. The bottom
graph is the 3D bigraph showing the violation of mutual exclusion
constraint; (b) Assumption of a shared edge e(0, 1) belonging to both
path 3→ 0→ 1→ 6 and path 4→ 0→ 1→ 5.

1) Node Sharing: When two paths both have a vertex in
common, we call that node a shared node. Shared nodes
represent a crossing between two paths. They arise when mul-
tiple paths are generated independently, e.g., using a standard
shortest path algorithm. A shared node means that the agent at
the intersection of different paths is required to simultaneously
replace multiple other agents on corresponding paths, which
is impossible. An example is illustrated in Fig. 7(a).

Lemma 1: For multiple pairs of agent-task insertion, as-

sume m paths Pi = (V p
i , E

p
i) ⊆ G (m > 1 and

i = 1, 2, · · · ,m) are generated from the Hungarian Algorithm,
then the set {Pi} do not (pairwise) share any node, i.e.,
V p
k ∩ V

p
l = ∅, where k, l = 1, 2, · · · ,m and k 6= l.

Proof: A shared (crossing) node vs ∈
⋃
∀i Pi has more

than one incoming routing edge and more than one outgoing
routing edge. More than two routing nodes must be connected
to vs:

|{u | e(vs, u) ∈ Pi,∀i = 1, 2, · · · ,m}| > 2. (15)

This means that in bigraph G̃ = Ω(G) either the corresponding
agent node (in top planar graph) or the task node (in bottom
planar graph) or both have more than one matched edges,
which contradicts the mutual exclusion constraint violating
feasibility of the assignment solution.

2) Edge Sharing: When two paths both have an edge
in common, we call that edge a shared edge. Practically it
represents a request for the agents involved to perform multiple
traversals simultaneously, which is also impossible. Naturally,
a shared edge implies some shared nodes; multiple shared
edges can form a shared path. An illustration with a simple
shared path (one shared edge) is in Fig. 7(b).

Lemma 2: For multiple pairs of agent-task insertion, as-
sume m paths Pi = (V p

i , E
p
i) ⊆ G (m > 1 and i =

1, 2, · · · ,m) are generated from the Hungarian Algorithm,
then {Pi} do not (pairwise) share any edges or path segments,
i.e., Ep

k ∩ E
p
l = ∅, where k, l = 1, 2, · · · ,m and k 6= l.

Proof: The proof follows reasoning involved in the
shared node case.

Routing paths P and Q are disjoint if neither nodes nor
edges are shared between them. Thus, the two preceding
Lemmas (1) and (2) lead to the following theorem:

Theorem 5.1: Hungarian Algorithm running on bigraph
G̃ = Ω(G) produces only disjoint paths on graph G.

These disjoint paths connect a set of new agents as sources
and a set of new task locations as destinations, finding paths
in a multiple source multiple goal (MSMG) routing problem.

C. Analysis of MSMG Paths

It is useful to compare the solution quality of independently
formed paths with concurrent optimization of MSMG paths.
Here we provide both an intuitive understanding by manipu-
lating the paths produced by the Hungarian Algorithm on the
3D bigraph and optimality proofs for conditions of particular
relevance to robotic applications.

1) Path Revision: One gains an understanding of how paths
are modified by examining the operation of the Hungarian
Algorithm at intermediate points in its execution. The algo-
rithm computes a path connecting all agents and tasks by
producing a matching through an incremental process which
continues until the matching is perfect. By examining the
projected routing path before a perfect matching is found, we
observe a process of modification and revision of paths as

new, better choices become available, i.e., as subsequent pairs
of agents and tasks are processed. Earlier paths are improved
by cancelling out expensive segments and shifting to new
short-cuts which connect to nearer destinations. This revision
mechanism arises from the search for an augmenting path,
which modifies matched edges as the algorithm proceeds.

Visualizing the differences in the paths in both Euclidean
graph and bigraph forms helps to explain how the process
eventually reaches the global optimum. Fig. 8 shows a simple
example of path revision: initially the system contains only
two agents 0 and 1 with an edge e(0, 1) connecting them,
agent 3 and task 6 are inserted and a path 3→ 0→ 1→ 6 is
generated. Next, agent 5 and task 4 are added to the search;
two concurrent paths must be found. The bottom graph of
Fig. 8(a) shows the 3D matching graph in which the matched
edge between agents 0 and 1 is flipped during augmentation
so it is unmatched in the subsequent path 5 → 1 → 0 → 4.
Thereafter, edge e(0, 1) is no longer a segment of any routing
path. Two new shorter disjoint paths 3 → 0 → 4 and 5 →
1→ 6 are produced as output, as shown in Fig. 8(b).

2) Optimality Analysis: Here we examine conditions for
globally optimizing the overall path length (summed length of
all MSMG path segments) and overall hopping distance. Both
are important because the former minimizes the total travel
distance for a operation, while the latter requires the fewest
task interruptions to the system.

Let P : A B denote a set of MSMG paths which
connect elements in A to B and are projected from a matching
computed with the Hungarian Algorithm. Further, let S(P)
denote the perfect matching weight sum of the 3D bigraph in
which MSMG paths P reside.

Theorem 5.2: When w(i, i) = 0 (∀i ∈ V \A), the MSMG
routing paths P have the globally shortest path length.

Proof: When w̃(i, i) = 0, ∀i ∈ V \A, the sum of weight

(a) (b)

Fig. 8: An illustration of path revision. The top two figures are 2D
graphs, and bottom figures are the corresponding 3D bigraphs.

in the perfect matching is

S(P) =
∑

∀(i,j)|e(i,j)∈P

w̃(i, j) +
∑
∀v/∈P

w̃(v, v)

=
∑

∀(i,j)|e(i,j)∈P

w̃(i, j) + 0

=
∑

∀(i,j)|e(i,j)∈P

w(i, j),

(16)

which is exactly the total length of all MSMG routing
paths. The Hungarian Algorithm always produces a perfecting
matching with an assignment solution that is globally optimal,
the total path length must therefore be the shortest as well.

Theorem 5.3: The MSMG routing paths P reach the global
shortest hopping distance D(P) when the weights w̃(i, i) (∀i ∈
V \A) are sufficiently small.

Proof: Assume there exists another set of MSMG paths
Q : A B with an overall shorter hopping distance D(Q) <
D(P). Let all weights of 3D bigraph vertical edges be equal
to a value ξ, i.e., w̃(i, i) = ξ, ∀i ∈ V \A. Since all nodes not
on the paths themselves maintain their matching, the weight
sums for the two matching solutions are

S(P) =
∑

∀(i,j)|e(i,j)∈P

w̃(i, j) + (|V | − D(P))ξ, (17)

and

S(Q) =
∑

∀(i,j)|e(i,j)∈Q

w̃(i, j) + (|V | − D(Q))ξ, (18)

respectively. Then we have

S(P)− S(Q) =
∑

∀(i,j)|e(i,j)∈P

w̃(i, j)−
∑

∀(i,j)|e(i,j)∈Q

w̃(i, j)

+ (D(Q)−D(P))ξ.
(19)

Now if we let
ξ = −(|V |ζ + ε), (20)

where ε is a small positive value and ζ = max(C) is the largest
value of the cost matrix. Since any cost cij ≥ 0, with (19),
we have

S(P)− S(Q) ≥ −
∑

∀(i,j)|e(i,j)∈Q

w̃(i, j)−D(P)ξ

≥ |V |ζ + ε−
∑

∀(i,j)|e(i,j)∈Q

w̃(i, j)

> 0,

(21)

which contradicts the optimality of the matching from the
Hungarian Algorithm, indicating that when the weights w̃(i, i)
(∀i ∈ V \ A) are sufficiently small the MSMG paths P must
have the shortest global hopping distance.

Until now, the reason for the bounds on the range of λ
have not been explained. The proofs of Theorem 5.2 and 5.3

show that when λ = 0, the weights w̃(i, i) = λcii = 0 are
small enough to capture the Euclidean shortest path. However,
the value of zero might not be sufficiently small to obtain
the shortest hopping distance (proof of Theorem 5.3 shows
that in general a negative value can be necessary in some
cases). However, the Euclidean graph generated by connecting
locations within some spatial neighborhood (e.g., capturing
sensing or communication limitations, or local traversability)
is special. Our previous work [Liu et al., 2011] illustrates that
in such graphs, the path minimizing the hopping distance and
the path minimizing total length have a bound that describes
how much they may differ. The difference shrinks as the
number of neighbors for each robot increases. We therefore
regard w̃(i, i) = λcii = 0 as sufficiently small to obtain short
hopping distances (the experimental results in Section VI-
A also show that when λ ≤ 0, the trends of all different
measurements tend to flatten out). Moreover, we do not wish
λ < 0 because in that case the global path length begins to
increase. Also, since λ cannot be greater than 1 otherwise
values on the matrix diagonal may no longer be the smallest
in the row (which would violate the feasibility of the vertical
matched edges in the 3D bigraph), this explains why select
λ ∈ [0, 1].

D. Concurrent Paths in Narrow Bridges

In investigating paths formed in complex environments, it
is important to determine the maximal number of concurrent
paths that can be formed. Narrow spaces can pose a challenge
because they can impose a limit on the concurrency that is
possible; understanding these limits allows one to decide when
sequential treatment (e.g., for subsets of A and B) might be
called for. This sections quantifies this aspect.

Definition 1: Let G = (V,E) be a connected graph. A
subset C ⊆ V is called a vertex cut if G− C (the remaining
graph after removing all vertices in C and their incident edges)
is disconnected. A minimal vertex cut is a vertex cut with the
least cardinality.

Definition 2: The local connectivity κ(u, v) (or κ(A,B))
is the size of the smallest vertex cut separating non-adjacent
vertices u and v (or vertices sets A ⊆ V and B ⊆ V).

Theorem 5.4: (Menger’s Theorem) Let G = (V,E) be a
graph and A,B ⊆ V , then κ(A,B) is equal to the maximum
number of disjoint A-B-paths (i.e., the paths that connect
vertices of A and B) in G.

Proof: Three proofs appear in Diestel [2005].

Theorem 5.4 provides a tight upper bound for the possible
disjoint routing paths. However, we wish to know how close
to this bound the disjoint paths produced by the Hungarian
Algorithm on the corresponding matching graphs are.

Theorem 5.5: For connected graph G = (V,E) with
A,B ⊆ V and min{|A|, |B|} ≥ κ(A,B), the number
of disjoint paths generated from the Hungarian Algorithm
is equal to κ(A,B), i.e., Hungarian Algorithm running on
G̃ = Ω(G) outputs a set of disjoint A-B-paths, so that each

(a) (b)

(c) (d)

Fig. 9: Conditions for concurrent paths passing through a narrow
bridge in a simplified Euclidean graph. (a) Nodes x and y on a
path (solid arrowed edges) are from the same minimal vertex cut
(circled in an ellipse); (b) Two paths are generated after having
found an augmenting path α → x → y → β; (c)—(d) Vertices
of a path that are from intersecting and independent minimal vertex
cuts, respectively.

path consists of exactly one cut vertex belonging to a minimal
set of cut vertices.

Proof: Assume a maximal set of disjoint paths
Pmax = {Pi}, i = 1, · · · ,m is output, and assume a minimal
vertex cut of G is C. If the number of paths |Pmax| < |C|,
there must be some path Pl (l ∈ [1,m]) that contains more than
one cut vertex from C. If these vertices form a set V ′l ⊆ V
with |V ′l | = K, then there must be K − 1 edges E′l ⊆ E
(which can also be path segments) connecting these vertices.
For an arbitrary edge e(x, y) ∈ E′l where x, y ∈ V ′l , x, y must
be incident with other edges that are not on routing paths (a
property following from the mutual exclusion constraint and
the definition of a minimal cut), suppose they are e(α, x),
e(y, β) respectively. (This is illustrated in Fig. 9(a).) Then path
α→ x→ y → β forms an augmenting path. Flipping matched
and unmatched edges cancels edge e(x, y) and effectively
bridges two new paths (this is shown in Fig. 9(b)). Similarly,
other edges in E′l can also be revised and cancelled, and each
such revision will add exactly one new path. Other complex
conditions involving multiple intersecting or independent sets
of minimal vertex cuts (see. Fig. 9(c) and 9(d)) are treated
analogously. There must be κ(A,B) disjoint paths generated,
each of which consists of exactly one vertex from a minimal
vertex cut.

VI. EXPERIMENTS AND RESULTS

We conducted two complementary forms of evaluation. The
first, a simulation study involving large graphs, systematically
evaluates the impact of edge degree, the effect of values
of λ, and multiple concurrent paths in narrow environments.
The second involves validation of the algorithm on physical
robots (n = 6) and ensures no unreasonable simplifications
or assumptions have been introduced whilst developing the
algorithm.

(a)

(b)

Fig. 10: (a) Connection with neighbors within a
sensing/communication disk; (b) A sparsely connected Euclidean
graph for a mobile multi-robot system.

A. Simulation of large-scale networked swarms

Evaluation of the algorithm on inputs representative of
large-scale systems was tested by constructing sparse Eu-
clidean graphs. In the graph, vertices represent the al-
ready deployed, currently stationary, robots. Edges represent
traversable links, each being weighted by the Euclidean dis-
tance between the associated agent-task pair. Positions of the
vertices were randomly generated, with each connected to its
nearest neighbors within a disk to model a sensing or com-
munication range. This allows the sparsity of the graph to be
controlled and the edge degree k of vertices to be manipulated.
Fig. 10 is an example, showing the communication disk and
Euclidean graph.

We first investigated the influence of degree, i.e., the number
of nearest neighbors, on the quality of the routing paths.
Figures 11(a)—11(d) are examples illustrating the paths in
graphs of different bounded degrees of 50, 30, 10, and 5,
respectively, with fixed λ (an arbitrary value of 0.7 for all of
instances). The newly inserted robot is located in the bottom
left corner and the newly inserted task in the upper right
corner. The routing paths have few changes for graphs with
degrees above 10, but a significant change happens when
the degree is under 5. We ran many different experiments

with graph sizes ranging from tens of vertices to hundreds
of vertices, and found the following trend: whatever the size,
graphs with degree of above ∼ 10 generate very similar paths,
but this is not the case with degree less than ∼ 7. This
characteristic suggests suitability for practical applications:
due to the limitations of sensing and communication, each
robot may only be able connect to a small number of neighbors
within a certain range. As long as the number of accessible
neighbors is greater than ∼ 7, the established sparse graph is
sufficient to capture most routing paths that can be found in
a corresponding graph of much higher density.

As mentioned before, the resulting paths have several partic-
ular properties of interest: the overall path length describing
the total travelling costs; the total number of agents to be
redeployed (how much disruption there is to the previous
assignment); the average travel distance for each robot (av-
erage edge length in the routing path) and the time used
to complete the redeployment (how fast the reassignment
can be done). We examined the relationship between these
properties and tunable parameter λ. Figures 11(e)— 11(h)
show different paths when λ decreases from 1 to 0, causing
a gradual straightening of the paths as total lengths become
shorter. For each λ, we collected statistics from 30 sets of
experiments, with bounded degree k ≈ 10 (a moderate value,
see the discussion above suggesting that this is reflective of
many different small values). Fig. 12 includes four plots, which
show the total travel distance, the number of robots reallocated,
the average distance each robot moves, and the finishing time
to complete the routing. We observe that as λ increases, both
the total travel distance and the number of reallocated robots
increase monotonically, whereas both the average moving
distance and the finishing time decrease monotonically. These
trends gradually flatten out as λ approaches 0, indicating
that 0 is generally enough to capture critical path properties.
Moreover, except the total travel distance, the rates of change
for other three properties are largest when λ is in the interval
between 0 and 0.5. We conclude that if λ is tuned to obtain
some desired behavior for these three properties, the tuning
stepsize should be reduced within that region.

We also tested the cases when multiple agent-task pairs are
introduced simultaneously. Figures 11(i)—11(k) illustrate the
insertion of multiple agent-task pairs at the same time. The
robots are located in the lower corners and tasks are assigned
in upper corners. Fig. 11(i) and 11(j) show two separate paths
when only one agent-task pair is inserted, and Fig. 11(k) shows
the case when the two pairs are added simultaneously. The
two new disjoint paths in Fig. 11(k) have higher quality than
the single pair cases because the routing solutions generated
from the Hungarian Algorithm represent a globally optimal
matching. Fig. 11(l) shows that the algorithm also works in
higher dimensions.

To verify instances in which the Euclidean graph contains
narrow bridges between the inserted robots and tasks, we
examined scenarios involving more complex environments. As
shown in Fig. 13, an attenuating wall with a narrow door
was added to the simulation environment. The results validate

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 11: (a)–(d) Paths produced in large scale multi-robot topologies of varying degree; (e)–(h) Paths in large scale multi-robot topologies
of varying λ; (i)–(k) Multiple optimal paths; (l) Path in a 3D scenario.

Fig. 12: The computed route’s properties as a function of tuning
parameter λ.

Theorem 5.5: the algorithm can generate paths precisely up to
the bound determined by the cardinality of minimal vertex cut
(see Fig. 13, as at most two paths across the narrow waist of
the graph can be found).

We also compared the shortest paths computed from our
method with one of the most well-known SSSP methods, the
Dijkstra’s algorithm, for the condition when λ = 0. In all
cases, our shortest routing paths are identical to those deter-
mined via Dijkstra’s classic shortest path algorithm. Fig. 14
shows an example of two identical paths found via Dijkstra’s
algorithm and the matching method. The advantage of the
proposed method over the popular SSSP algorithms lies in its
computational complexity in sparse graphs, the scalable and
tunable path outputs, as well as the manner in which multiple
concurrent paths are intelligently produced.1

1An earlier comparison of the proposed method with shortest paths from
Dijkstra’s algorithm showed minor differences in the addition of one node
[Liu and Shell, 2012b]; this was traced back to a rounding error and
has subsequently been corrected. The fact that the algorithms will produce
identical paths even when the inputs are numerically sensitive constitutes quite
strong evidence.

(a)

(b)

Fig. 13: A Euclidean graph containing a narrow bridge. (a) A single
robot and task pair is inserted (the circled robot and the cone) on
either size of the wall; (b) Two pairs of robots and tasks are inserted,
with two disjoint paths successfully found. No extra robot task pairs
can be added in this example.

B. Physical robot experiments

We also verified our algorithm with an implementation on
physical robots. To construct the sparse bigraph, the algorithm
does not need the robots’ absolute position information, but
instead requires the nearest neighbors’ distances for each
robot. However, if the robots’ positions are known, it makes
the bigraph construction easy since the distances between any
pair of robots can be directly computed. In the experiment,
position information was first obtained via a popular local-
ization algorithm; next, we assigned the localized robots to
specific task locations. After the assigned robots have reached
their respective destinations, new robot and task pairs were
injected into the system.

More specifically, the robots we used are the iRobot create
platform, as shown in Fig. 15(a). Each robot is able to localize
itself in our research building via a particle filter localization
method [Fox, 2001] available as part of the player/stage
project [Gerkey et al., 2003]. Localization is achieved by
using the Hokuyo URG-04LX-UG01 laser sensor, as well as
a map drawn to scale with the dimensions of our building. An

(a)

(b)

Fig. 14: (a) Shortest path from Dijkstra’s algorithm; (b) Path produced
by the proposed method when λ = 0.

ASUS EEE netbook on each robot provides the computing
platform; it processes all the sensor input, provides onboard
communication, calculates cost estimates, logs data, etc.

Costs are simply the planned path lengths between robot and
task locations. The path length is obtained through a wavefront
global path planner and a VFH+ (Vector Field Histogram)
local path planner [Ulrich and Borenstein, 1998]. Each robot
follows a series of waypoints generated by the path planner
to reach the assigned task location (see Fig. 15(c)). The path
length is the sum of all the path-segments among its corre-
sponding waypoints. Note that the robots localize themselves
quickly with appropriate parameters (e.g., reasonable initial
pose estimate, a small laser range variance, etc.) that can be
tuned in advance.

The robots communicate with each other using UDP. Each
robot runs a UDP server and listens to the messages sent by
teammates. When a new robot-task pair is inserted into the
system, the new robot first queries the latest bigraph from
the deployed system, then it connects both itself and the
newly allocated task to the 3D bigraph with edges weighted
by distances. Since the deployed system already has all
robot-task pairs matched, the new robot need only run one
stage of the Hungarian Algorithm incrementally to get a new
perfect matching; the result is the routing solution. When

(a) (b)

(c) (d)

Fig. 15: (a) The physical robot used in experiments; (b) Robots
localizing and executing tasks in the corridor of our research building;
(c)–(d) Localization results and task allocation information observed
by the playernav tool. (c) One robot-task pair is inserted, the new robot
is circled in lower corridor and the new task location is labelled with
triangle in upper corridor. (d) Two robot-task pairs being inserted.

multiple robots with multiple tasks are introduced, one leading
robot is randomly selected from the set of new robots to
be responsible for constructing a new bigraph based on the
queried system (as well as the connecting newly introduced
robots and tasks into the graph). This leading robot runs the
Hungarian Algorithm with the necessary stages (#stages =
min{#robots,#tasks}), to obtain a new allocation solution,
which it broadcasts to every team member for an instantaneous
routing. The team members then have a commitment to
execute those tasks.

We placed task locations uniformly in the left and right
corridors as shown in Fig. 15(c), and started the robots at
random initial locations. The robots localize themselves and
move to the designated (initially assigned) task locations. Once
all robots have reached their respective destinations, a new
robot-task pair is inserted as shown in Fig. 15(c). The new
robot moves to its task location via a routing path, either
left or right traversal in our case. We manipulated both the
degree of vertices in the graph and the tuning parameter λ.
Note that the number of vertices between the left and right
paths is purposely unbalanced so that the left path always has
more vertices. Fig. 16 shows the results of a run on the dense
graph that connects all robot-robot pairs. The x-axis denotes
the degree of unbalancedness in the number of robots in the
left and right paths, e.g., l2-r1 means there are 2 robots in
the left path and 1 robot in the right path. The result indicates
that, generally, the paths switch from one to the other for
a value of λ between 0.3 ∼ 0.4. This is consistent with

Fig. 16: A plot of the watershed λ that switches between the left and
right paths. The horizontal axis value l〈α〉-r〈β〉 denotes the left path
has 〈α〉 robots (vertices) and the right path contains 〈β〉 robots.

the conclusion from the simulation data that path switching
occurs more frequently when λ is less than 0.5. Additionally,
we tested the situation where each robot is connected to
only its nearest neighbors (only the nearest robot in each
direction is connected, so that the graph remains connected
but with minimal vertex degree). Here, the result differs when
λ approaches 0: in a dense graph the routing solution directly
allocates the new robot to the new task, whereas in the sparse
graph it chooses the path on the right (the shortest routing).
This is to be expected since in the dense graph the shortest
path is the single edge directly connecting the start and goal.

We also tested cases involving insertion of multiple robot-
task pairs. The results show that, despite the sparsity of the
graphs or the difference of λ values, the Hungarian Algorithm
always correctly generates disjoint paths that connect the
newly inserted robots to their nearest available task locations.
To model the narrow bridge case, each robot only connected
with its nearest neighbors. The minimal vertex cut is then
only 2 with the cut vertices located at opposite corridors (two
bridges). Fig. 15(d) shows the 2 paths that pass through the
minimal vertex cuts. No further robot and task can be inserted
in this example.

VII. DISCUSSION

This paper considers the task of computing tunable routing
solutions by formulating the problem as an assignment prob-
lem. We believe it has the following advantages compared to
other algorithms which may also be utilized for the problem:

1) Tunable paths via edge scaling: The algorithm does not
modify any of the network connection information (and the
underlying Euclidean graph) but achieves different routing
solutions by scaling a special “virtual” edge for each vertex
via λ. This is easily computed and easily visualized.

2) Concurrent paths for multi-pair insertions: The paths pro-
duced when more than one pair of agents and tasks are
inserted are guaranteed to be disjoint. Such paths ensure that
concurrent movement of all the robots to their redeployment
positions is possible. Since environmental constraints may
limit the number of concurrent paths, an important property
is that the algorithm can make maximum use of capacity of

bridges in the graph, and will actually realize the theoretical
upper-bound if needed.

3) Low computational complexity: Each Hungarian stage re-
quires O(n2) for dense bigraphs [Toroslu and Üçoluk, 2007],
and for a sparse bigraph with edge degree of k, the computa-
tional complexity is bounded by O(kn). When the problem
arises from a network of robots communicating with nearby
neighbors, we expect that this latter bound, i.e., linear in the
system size, will be applicable.

It is worth emphasizing that the approach described in this
paper is applicable more generally than the specific scenario
we have used as an example throughout. It is not necessary for
the routing graph edge weights to be Euclidean distances, nor
necessarily for the robots to be localized. The optimization
criteria do not depend on particular locations, rather known
or estimated distances or traversability costs between nearby
robots can suffice. As a motivating example, consider a swarm
of wirelessly networked robots whose positions are not known.
Local signal strength readings can be used both to estimate
costs, and actually to perform gradient-based traversal from
a particular node to another. Different focuses on minimal
distance versus time can be important in wireless networking
when the traversal is performed by gradient seeking to a
particular location: we want to minimize time while also
limiting the number of slow, unreliable seeking movements
(i.e., limiting the number of reallocations).

The model can also be extended to topological change
of large multi-agent systems. For instance, by disconnecting
individual agent-task pairs from the topology and reconnecting
them with new task assignments, we can “morph” the topol-
ogy using the approach described. This can be used in the
simulation of flocking formations, or global shape morphing
of particle systems, or the topological variations for mobile
robots moving together but adjusting for navigation in irregular
and confined environments.

VIII. CONCLUSION

This paper proposes a solution to a problem which arises in
scenarios where new robots and tasks are added to a network
of already deployed units. We seek to move the new robots into
maximally useful positions and to adjust the deployed robots
only as necessary where doing so reduces costs (e.g., energy,
time). The result is a physical routing of robots through the
graph encoding navigation constraints.

Our approach applies an variant of the Hungarian Algorithm
to solve the optimal assignment problem. The resultant match-
ing forms a routing path, but efficient computation requires
we treat the assignment problem incrementally and address
sparse graph cases. The paper’s most significant contribution
is in identifying and interpreting the relationship between the
routing graph in Euclidean space and the optimality of the
operations on the bigraph represented in three dimensions.
The bipartite matching graph that arises from planar path
routing is of a specialized form: it is a two layered bigraph
with weighted links connected in 3D space. By adjusting the

weights of special edges between the two layers we are able
to produce a range of solutions. This allows one to balance
optimization criteria to minimize total distance travelled, the
level of disruption caused by redeploying robots, and the time
taken to complete the adjustment by all robots. The algorithm
is studied systematically in simulation and also validated with
physical robots in our research building.

FUNDING ACKNOWLEDGMENT

This research was supported by the Department of Com-
puter Science and Engineering at Texas A&M University and
the Texas Engineering Experiment Station (TEES).

REFERENCES

[Agmon et al., 2010] Noa Agmon, Gal A Kaminka, Sarit Kraus, and Meytal
Traub. Task Reallocation in Multi-Robot Formations. J. of Physical Agents
4(2), 2010.

[Alonso-Mora et al., 2011] Javier Alonso-Mora, Andreas Breitenmoser,
Martin Rufli, Roland Siegwart, and Paul Beardsley. Multi-robot system for
artistic pattern formation. In IEEE International Conference on Robotics
and Automation, ICRA 2011, Shanghai, China, 9-13 May 2011, pages
4512–4517, 2011.

[Ayanian et al., 2012] Nora Ayanian, Daniela Rus, and Vijay Kumar. De-
centralized Multirobot Control in Partially Known Environments with
Dynamic Task Reassignment. In IFAC Workshop on Distributed Estimation
and Control in Networked Systems, pages 311–316, 2012.

[Bertsekas, 1990] D. P. Bertsekas. The auction algorithm for assignment and
other network flow problems: A tutorial. Interfaces, 1990.

[Bertsekas, 1991] Dimitri P. Bertsekas. An Auction Algorithm for Shortest
Paths. SIAM Journal on Optimization, 1(4):425–447, 1991.

[Burkard et al., 2009] R.E. Burkard, M. Dell’Amico, and S. Martello. As-
signment problems. Society for Industrial and Applied Mathematics, New
York, NY, 2009.

[Diestel, 2005] Reinhard Diestel. Graph Theory, volume 173 of Graduate
Texts in Mathematics. Springer-Verlag, Heidelberg, third edition, 2005.

[Elkaim et al., 2006] G.H. Elkaim, R.J. Kelbley, and Aydan M. Erkmen.
A Lightweight Formation Control Methodology for a Swarm of Non-
Holonomic Vehicles. In IEEE Aerospace Conference, Big Sky, MT, 2006.

[Elmaliach et al., 2009] Yehuda Elmaliach, Noa Agmon, and Gal A.
Kaminka. Multi-robot area patrol under frequency constraints. Annals
of Math and Artificial Intelligence, pages 3–4, 2009.

[Fox, 2001] Dieter Fox. KLD-sampling: Adaptive particle filters. In Ad-
vances in Neural Information Processing Systems (NIPS-14), pages 713–
720, 2001.

[Gerkey and Matarić, 2004] Brian P. Gerkey and Maja J. Matarić. A formal
analysis and taxonomy of task allocation in multi-robot systems. Interna-
tional Journal of Robotics Research, 23(9):939–954, September 2004.

[Gerkey et al., 2003] Brian Gerkey, Richard T. Vaughan, and Andrew
Howard. The player/stage project: Tools for multi-robot and distributed
sensor systems. In Proc. Intl. Conf. on Advanced Robotics, 2003.

[Giordani et al., 2010] Stefano Giordani, Marin Lujak, and Francesco Mar-
tinelli. A distributed algorithm for the multi-robot task allocation problem.
In Proceedings of the 23rd international conference on Industrial engineer-
ing and other applications of applied intelligent systems - Volume Part I,
IEA/AIE’10, pages 721–730, Berlin, Heidelberg, 2010. Springer-Verlag.

[Howard et al., 2002] Andrew Howard, Maja J. Matarić, and Gaurav S.
Sukhatme. An Incremental Self-Deployment Algorithm for Mobile Sensor
Networks. Autonomous Robots 13(2), pages 113–126, 2002.

[Karmani et al., 2007] R.K. Karmani, T. Latvala, and G. Agha. On scaling
multi-agent task reallocation using market-based approach. In Intl Conf.
on Self-Adaptive and Self-Organizing Systems, pages 173–182, 2007.

[Kuhn, 1955] Harold W. Kuhn. The Hungarian Method for the Assignment
Problem. Naval Research Logistics Quarterly, 2(1):83–97, 1955.

[Liu and Shell, 2011] Lantao Liu and Dylan Shell. Assessing Optimal As-
signment under Uncertainty: An Interval-based Algorithm. Intnl. Journal
of Robotics Research 30(7), pages 936–953, 2011.

[Liu and Shell, 2012a] Lantao Liu and Dylan Shell. Large-scale multi-robot
task allocation via dynamic partitioning and distribution. Autonomous
Robots 33(3):291–307, 2012.

[Liu and Shell, 2012b] Lantao Liu and Dylan A. Shell. Tunable routing
solutions for multi-robot navigation via the assignment problem: A 3D
representation of the matching graph. In Proceedings of IEEE International
Conference on Robotics and Automation, pages 4800–4805. IEEE, 2012.

[Liu et al., 2011] Lantao Liu, Benjamin Fine, Dylan A. Shell, and Andreas
Klappenecker. Approximate characterization of multi-robot swarm shapes
in sublinear-time. In Proceedings of IEEE International Conference on
Robotics and Automation, pages 2886–2891, Shanghai, China, May 2011.

[Lovász and Plummer, 1986] László Lovász and Michael D. Plummer.
Matching Theory. North-Holland, 1986.

[Michael et al., 2008] Nathan Michael, Michael M. Zavlanos, Vijay Kumar,
and George J. Pappas. Distributed multi-robot task assignment and
formation control. In IEEE Intl. Conf on Robotics and Automation, pages
128–133, 2008.

[Mills-Tettey et al., 2007] G. Ayorkor Mills-Tettey, Anthony Stentz, and
M. Bernardine Dias. The Dynamic Hungarian Algorithm for the Assign-
ment Problem with Changing Costs. Technical Report CMU-RI-TR-07-27,
Carnegie Mellon University, 2007.

[Munkres, 1957] J. Munkres. Algorithms for the assignment and transporta-
tion problems. Journal of the SIAM 5(1), pages 32–38, 1957.

[Papadimitriou and Steiglitz, 1998] Christos H. Papadimitriou and Kenneth
Steiglitz. Combinatorial Optimization : Algorithms and Complexity. Dover
Publications, 1998.

[Ravichandran et al., 2007] Ramprasad Ravichandran, Geoffrey Gordon, and
Seth Copen Goldstein. A Scalable Distributed Algorithm for Shape
Transformation in Multi-Robot Systems. In Proceedings of the IEEE
International Conference on Intelligent Robots and Systems, 2007.

[Ren and Sorensen, 2008] Wei Ren and Nathan Sorensen. Distributed co-
ordination architecture for multi-robot formation control. Robotics and
Autonomous Systems 56(4), pages 324–333, 2008.

[Shen and Salemi, 2002] Wei-Min Shen and B. Salemi. Distributed and
dynamic task reallocation in robot organizations. In IEEE Intl. Conf. on
Robotics and Automation, pages 1019–1024, 2002.

[Topal et al., 2009] Sebahattin Topal, Ismet Erkmen, and Aydan M. Erkmen.
Morphing a Mobile Robot Network to Dynamic Task Changes over Time
and Space. In Intl. Conf. on Automation, Robotics and Control Sys., pages
192–199, 2009.

[Toroslu and Üçoluk, 2007] Ismail H. Toroslu and Göktürk Üçoluk. Incre-
mental Assignment Problem. Information Sciences, 177(6):1523–1529,
March 2007.

[Ulrich and Borenstein, 1998] Iwan Ulrich and Johann Borenstein. VFH+:
reliable obstacle avoidance for fast mobile robots. In Proc. Intl. Conf. on
Robotics and Automation, pages 1572–1577, Leuven, Belgium, 1998.

[Wurm et al., 2008] Kai M. Wurm, Cyrill Stachniss, and Wolfram Burgard.
Coordinated multi-robot exploration using a segmentation of the environ-
ment. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1160–1165, 2008.

